Citation: Yi-kun Guo, Da-hui Zhao. New Perylenediimide Polymer Acceptor Design and Their Applications to All-polymer Solar Cells[J]. Acta Polymerica Sinica, ;2018, (2): 174-185. doi: 10.11777/j.issn1000-3304.2018.17268 shu

New Perylenediimide Polymer Acceptor Design and Their Applications to All-polymer Solar Cells

  • Corresponding author: Da-hui Zhao, dhzhao@pku.edu.cn
  • Received Date: 18 September 2017
    Revised Date: 23 October 2017

  • Bulk-heterojunction (BHJ) polymer solar cells (PSCs) have attracted attention over the past decades due to their distinct advantages of low cost, light weight, and the suitability for flexible-device fabrications. Despite the remarkable success in improving the efficiency of PSCs, fullerene-based acceptors have shown evident limitations. Accordingly, increased research efforts have been invested in developing non-fullerene acceptors, and great development has been witnessed in this field in recent years. Among all different kinds of BHJ PSCs, all polymer solar cells (all-PSCs) potentially possess the most stable donor-acceptor phase separation morphology, and all-polymer films are expected to boast superior mechanical properties. Yet, the bottle neck of enhancing the power conversion efficiency (PCE) of all-PSCs currently lies in the performance of the polymer acceptors. In the past years, we have been focusing on designing new polymer acceptors using perylenediimide (PDI) as the main building block and studying their performance in all-PSCs. A series of PDI-based polymer acceptors have been synthesized and studied since 2013. Due to the steric hindrance induced by the bay-region substitution, the PDI polymers mostly manifest low crystallinity. Accordingly, by enhancing the conjugation and rigidity of the polymer backbone, and thereby improving the aggregation and crystallization ability of the polymers, increased PCE has been achieved with all-PSC devices. Consistently, experimental evidence has also been collected showing improved morphology of the active layer. As a result of the continued and systematic studies on designing and synthesizing new polymer acceptors, along with the optimization of device fabrication conditions, the best PCE of all-PSC incorporating a PDI polymer acceptor has now been boosted to 8.59%. Very similar PCE values can be obtained from devices fabricated under ambient conditions, proving the high chemo-stability of the active-layer materials. The synthetic methods of these PDI-based polymers and the device fabrication conditions are much more convenient and economical. All these properties are friendly to the large-scale material preparation and device production.
  • 加载中
    1. [1]

      Facchetti A. Mater Today, 2015, 16:123-132
       

    2. [2]

      Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B. Nature, 1995, 376:498-500  doi: 10.1038/376498a0

    3. [3]

      Long X, Ding Z, Dou C, Zhang J, Liu, J, Wang L. Adv Mater, 2016, 28:6504-6508  doi: 10.1002/adma.201601205

    4. [4]

      Li Z, Xu X, Zhang W, Meng X, Ma W, Yartsev A, Inganäs O, Andersson M R, Janssen R A J, Wang E. J Am Chem Soc, 2016, 138:10935-10944  doi: 10.1021/jacs.6b04822

    5. [5]

      Hwang Y J, Courtright B A E, Ferreira A S, Tolbert S H, Jenekhe S A. Adv Mater, 2015, 27:4578-4584  doi: 10.1002/adma.v27.31

    6. [6]

      Lee C, Kang H, Lee W, Kim T, Kim K H, Woo H Y, Wang C, Kim B J. Adv Mater, 2015, 27:2466-2471  doi: 10.1002/adma.201405226

    7. [7]

      Mori D, Benten H, Okada I, Ohkita H, Ito S. Energy Environ Sci, 2014, 7:2939-2943  doi: 10.1039/C4EE01326C

    8. [8]

      Kim T, Kim J H, Kang T E, Lee C, Kang H, Shin M, Wang C, Ma B, Jeong U, Kim T S, Kim B J. Nat Commun, 2015, 6:8547
       

    9. [9]

      Gao L, Zhang Z, Xue L, Min J, Zhang J, Wei Z, Li Y. Adv Mater, 2016, 28:1884-1890  doi: 10.1002/adma.201504629

    10. [10]

      Fan B, Ying L, Wang Z, He B, Jian X F, Huang F, Cao Y. Energy Environ Sci, 2017, 10:1243-1251  doi: 10.1039/C7EE00619E

    11. [11]

      Jung J W, Jo J W, Chueh C C, Liu F, Jo W H, Russell T P, Jen A K Y. Adv Mater, 2015, 27:3310-3317  doi: 10.1002/adma.v27.21

    12. [12]

      Lv L, Wang X, Wang X, Yang L, Dong T, Yang Z, Huang H. ACS Appl Mater Interfaces, 2016, 8:34620-34629
       

    13. [13]

      Zhan X, Tan Z A, Domercq B, An Z, Zhang X, Barlow S, Li Y, Zhu D, Kippelen B, Marder S R. J Am Chem Soc, 2007, 129:7246-7247
       

    14. [14]

      Zhou E, Cong J, Wei Q, Tajima K, Yang C, Hashimoto K. Angew Chem Int Ed, 2011, 50:2799-2803  doi: 10.1002/anie.201005408

    15. [15]

      Fukutomi Y, Nakano M, Hu J, Osaka I, TakimiyaK. J Am Chem Soc, 2013, 135:11445-11448  doi: 10.1021/ja404753r

    16. [16]

      Yang J, Xiao B, Tajima K, Nakano M, Takimiya K, Tang A, Zhou E. Macromolecules, 2017, 50:3179-3185  doi: 10.1021/acs.macromol.7b00414

    17. [17]

      Dou C, Ding Z, Zhang X, Liu J, Wang L. Angew Chem Int Ed, 2015, 54:3648-3652  doi: 10.1002/anie.201411973

    18. [18]

      Long X, Ding Z, Dou C, Zhang J, Liu J, Wang L. Adv Mater, 2016, 28:6504-6508  doi: 10.1002/adma.201601205

    19. [19]

      Zhang Z, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56:13503-13507

    20. [20]

      Benten H, Mori D, Ohkita H, Ito S. J Mater Chem A, 2016, 4:5340-5365  doi: 10.1039/C5TA10759H

    21. [21]

      Zhan C, Yao J. Chem Mater, 2016, 28:1948-1964
       

    22. [22]

      Zhong Y, Trinh M T, Chen R, Purdum G E, Khlyabich P P, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam C Y, Sfeir M Y, Black C T, Steigerwald M L, Loo Y L, Ng F, Zhu X Y, Nuckolls C. Nat Commun, 2015, 6:8242  doi: 10.1038/ncomms9242

    23. [23]

      Wu Q, Zhao D, Schneider A M, Chen W, Yu L. J Am Chem Soc, 2016, 138:4698-4705
       

    24. [24]

      Zhang A, Li C, Yand F, Zhang K, Wang Z, Wei Z, Li W. Angew Chem Int Ed, 2017, 56:2694-2698  doi: 10.1002/anie.201612090

    25. [25]

      Yang L, Chen Y, Chen S, Dong T, Deng W, Lv L, Yang S, Yan H, Huang H. J Power Sources, 2016, 324:538-546  doi: 10.1016/j.jpowsour.2016.05.119

    26. [26]

      Yan Q, Zhou Y, Zheng Y, Pei J, Zhao D. Chem Sci, 2013, 4:4389-4394
       

    27. [27]

      Meng, D, Fu H, Xiao C, Meng X, Winands T, Ma W, Wei W, Fan B, Huo L, Doltsinis N L, Li Y, Sun Y, Wang Z. J Am Chem Soc, 2016, 138:10184-10190  doi: 10.1021/jacs.6b04368

    28. [28]

      Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim J Y, Sun Y, Wang Z, Heeger A J. J Am Chem Soc, 2016, 138:375-380  doi: 10.1021/jacs.5b11149

    29. [29]

      Hwang Y, Li H, Courtright B A E, Subramaniyan S, Jenekhe S A. Adv Mater, 2016, 28:124-131  doi: 10.1002/adma.201503801

    30. [30]

      Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lai J Y L, Hu H, Yu D, Yan H. Energy Environ Sci, 2015, 8:520-525
       

    31. [31]

      Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Inganäs O, Gundogdu K, Gao F, Yan H. Nature Energy, 2016, 1:16089
       

    32. [32]

      Zhang X, Zhang C, Zhang X, Yao J. Tetrahedron, 2013, 69:8155-8160  doi: 10.1016/j.tet.2013.07.035

    33. [33]

      Zhou Y, Yan Q, Zheng Y, Wang J, Zhao D, Pei J. J Mater Chem A, 2013, 1:6609-6613  doi: 10.1039/c3ta10864c

    34. [34]

      Zhou Y, Kurosawa T, Ma W, Guo Y, Fang L, Vandewal K, Diao Y, Wang C, Yan Q, Reinspach J, Mei J, Appleton A L, Koleilat G I, Gao Y, Mannsfeld S C B, Salleo A, Ade H, Zhao D, Bao Z. Adv Mater, 2014, 26:3767-3772  doi: 10.1002/adma.v26.22

    35. [35]

      Zhou Y, Gu K L, Gu X, Kurosawa T, Yan H, Guo Y, Koleilat G I, Zhao D, Toney M F, Bao Z. Chem Mater, 2016, 28:5037-5042  doi: 10.1021/acs.chemmater.6b01776

    36. [36]

      Li S, Zhang H, Zhao W, Ye L, Yao H, Yang B, Zhang S, Hou J. Adv Energy Mater, 2016, 6:1501991
       

    37. [37]

      Guo Y, Li Y, Han H, Yan H, Zhao D. Chinese J Polym Sci, 2017, 35:293-301

    38. [38]

      Guo Y, Li Y, Awartani O, Zhao J, Han H, Ade H, Zhao D, Yan H. Adv Mater, 2016, 28:8483-8489  doi: 10.1002/adma.v28.38

    39. [39]

      Diao Y, Zhou Y, Kurosawa T, Shaw L, Wang C, Park S, Guo Y, Reinspach J A, Gu K, Gu X, Tee B C K, Pang C, Yan H, Zhao D, Toney M F, Mannsfeld S C B, Bao Z. Nat Commun, 2015, 6:7955  doi: 10.1038/ncomms8955

    40. [40]

      Gu X, Zhou Y, Gu K, Kurosawa T, Guo Y, Li Y, Lin H, Schroeder B, Yan H, Molina-Lopez F, Tassone C, Wang C, Mannsfeld S, Zhao D, Toney M, Bao Z. Adv Energy Mater, 2017, 7:1602742  doi: 10.1002/aenm.201602742

    41. [41]

      Guo Y, Li Y, Awartani O, Han H, Zhang G, Ade H, Yan H, Zhao D. Mater Chem Front, 2017, 1:1362-1368
       

    42. [42]

      Guo Y, Li Y, Awartani O, Han H, Zhao J, Ade H, Yan H, Zhao D. Adv Mater, 2017, 29:1700309  doi: 10.1002/adma.201700309

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    5. [5]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    6. [6]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    7. [7]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    10. [10]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    11. [11]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    12. [12]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    13. [13]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    16. [16]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    17. [17]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    18. [18]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    19. [19]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    20. [20]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(0)
  • Abstract views(178)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return