Citation: Zhong-qiang Zhang, Zhi-xi Liu, Kang-rong Yan, Huan-bin Li, Wen-qing Liu, Xin-hui Lu, Han-ying Li, Hong-zheng Chen, Chang-zhi Li. Photovoltaic Properties of DPP-based Two-and Three-component Polymers[J]. Acta Polymerica Sinica, ;2018, (2): 295-303. doi: 10.11777/j.issn1000-3304.2018.17253 shu

Photovoltaic Properties of DPP-based Two-and Three-component Polymers

  • Corresponding author: Chang-zhi Li, czli@zju.edu.cn
  • Received Date: 4 September 2017
    Revised Date: 19 September 2017

  • Diketopyrrolopyrrole (DPP) is attractive for building conjugated polymers for polymer solar cell (PSC) and organic field effect transistor (OFET). Yet the usual access to DPP conjugated polymers is via donor-acceptor (D-A) two-component polymerization. However, the number of excellent polymers based on the D-A combination is still limited, which promotes researchers to explore new strategy for preparation of novel conjugated polymers and to understand their structure-property relationship. In this work, a DPP-based polymer P1 was first obtained with co-polymerization of DPP (A) and alkoxyl benzene (D). Further, two novel polymers ( P2 and P3 ) were developed via introducing a third electron-deficient monomer X (difluoro-benzothiadiazole or naphthalene diimide) in the polymerization process. P1 - P3 polymers (molecular weight:3.83×104, 5.30×104 and 6.56×104) showed good solubility in common organic solvents. Due to the hybridization of the molecular orbitals between their three components (D, A and X), P2 and P3 showed narrower bandgaps (1.26 and 1.27 eV) than P1 , and their absorption thus red-shifted up to 1000 nm in comparison to that of D-A polymer P1 (bandgap of 1.50 eV). The introduction of electron-deficient monomers also deepened the highest occupied molecular orbital (HOMO) levels of P2 and P3 to -5.28 and -5.33 eV, which was beneficial to a larger open circuit voltage (VOC) in PSCs. Moreover, the introduction of the third monomer X altered the film properties of the polymers. It showed that P1 with preference of face-on orientation exhibited a good power conversion efficiency (PCE) in PSCs, while P2 demonstrated an improved hole mobility in OFET due to the preferable edge-on orientation. When blended with [6, 6]-phenyl-C71-butyric acid methyl ester (PC71BM), P1 showed a PCE of 2.56%, with a VOC of 0.68 V, a short circuit current density (JSC) of 5.71 mA cm-2 and a fill factor (FF) of 0.66, while P2 gave a lower PCE of 1.79%, with a VOC of 0.71 V, a JSC of 3.91 mA cm-2 and a FF of 0.65. This work provides references for the design of novel conjugated polymers for PSCs and OFETs.
  • 加载中
    1. [1]

      Huang Y, Kramer E J, Heeger A J, Bazan G C. Chem Rev, 2014, 114(14):7006-7043  doi: 10.1021/cr400353v

    2. [2]

      Nguyen T L, Choi H, Ko S J, Uddin M A, Walker B, Yum S, Jeong J E, Yun M H, Shin T J, Hwang S, Kim J Y, Woo H Y. Energy Environ Sci, 2014, 7(9):3040-3051  doi: 10.1039/C4EE01529K

    3. [3]

      Liao S H, Jhuo H J, Cheng Y S, Chen S A. Adv Mater, 2013, 25(34):4766-4771  doi: 10.1002/adma.v25.34

    4. [4]

      Guo X, Zhang M, Ma W, Ye L, Zhang S, Liu S, Ade H, Huang F, Hou J. Adv Mater, 2014, 26(24):4043-4049  doi: 10.1002/adma.v26.24

    5. [5]

      Xu T, Yu L. Mater Today, 2014, 17(1):11-15  doi: 10.1016/j.mattod.2013.12.005

    6. [6]

      Li Y F. Accounts Chem Res, 2012, 45(5):723-733
       

    7. [7]

      Wang Li, Xu Miao, Ying Lei, Liu Feng, Cao Yong. Acta Polymerica Sinica, 2008, (10):993-997  doi: 10.3321/j.issn:1000-3304.2008.10.011
       

    8. [8]

      Lai Y Y, Cheng Y J, Hsu C S. Energy Environ Sci, 2014, 7(6):1866-1883  doi: 10.1039/c3ee43080d

    9. [9]

      Li C Z, Yip H L, Jen A K Y. J Mater Chem, 2012, 22(10):4161-4177  doi: 10.1039/c2jm15126j

    10. [10]

      Hu Z, Ying L, Huang F, Cao Y, Sci China Chem, 2017, 60(5):571-582
       

    11. [11]

      Scharber M C. Adv Mater, 2016, 28(10):1994-2001  doi: 10.1002/adma.201504914

    12. [12]

      Jung J W, Jo J W, Jung E H, Jo W H. Org Electron, 2016, 31:149-170  doi: 10.1016/j.orgel.2016.01.034

    13. [13]

      Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev, 2015, 115(23):12666-12731  doi: 10.1021/acs.chemrev.5b00098

    14. [14]

      Li W, Hendriks K H, Wienk M M, Janssen R A J. Acc Chem Res, 2016, 49(1):78-85
       

    15. [15]

      Cheng Y J, Yang S H, Hsu C S. Chem Rev, 2009, 109(11):5868-5923  doi: 10.1021/cr900182s

    16. [16]

      Bronstein H, Chen Z, Ashraf R S, Zhang W, Du J, Durrant J R, Tuladhar P S, Song K, Watkins S E, Geerts Y, Wienk M M, Janssen R A, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I. J Am Chem Soc, 2011, 133(10):3272-3275  doi: 10.1021/ja110619k

    17. [17]

      Subbiah J, Purushothaman B, Chen M, Qin T, Gao M, Vak D, Scholes F H, Chen X, Watkins S E, Wilson G J, Holmes A B, Wong W W, Jones D J. Adv Mater, 2014, 27(4):702-705
       

    18. [18]

      Jung J W, Liu F, Russell T P, Jo W H. Adv Mater, 2015, 27(45):7462-7468  doi: 10.1002/adma.201503902

    19. [19]

      Ma T, Jiang K, Chen S, Hu H, Lin H, Li Z, Zhao J, Liu Y, Chang Y M, Hsiao C C, Yan H. Adv Energy Mater, 2015, 5(20):1501282
       

    20. [20]

      Shah M N, Zhang S, Sun Q, Ullah F, Chen H, Li C Z. Tetrahedron Lett, 2017, 58(30):2975-2980
       

    21. [21]

      Zhou C, Zhang G, Zhong C, Jia X, Luo P, Xu R, Gao K, Jiang X, Liu F, Russell T P, Huang F, Cao Y. Adv Energy Mater, 2017, 7(1):1601081  doi: 10.1002/aenm.v7.1

    22. [22]

      Deng Yunfeng, Bao Cheng, Tian Hongkun, Xie Zhiyuan, Geng Yanhou. Acta Polymerica Sinica, 2013, (5):609-618
       

    23. [23]

      Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5:5293
       

    24. [24]

      Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H. Nat Photon, 2015, 9(6):403-408  doi: 10.1038/nphoton.2015.84

    25. [25]

      Huang J, Zhang X, Zheng D, Yan K, Li C Z, Yu J. Solar RRL, 2017, 1(1):1600008  doi: 10.1002/solr.201600008

    26. [26]

      Huang J, Wang H, Yan K, Zhang X, Chen H, Li C Z, Yu J. Adv Mater, 2017, 29(19):1606729  doi: 10.1002/adma.v29.19

    27. [27]

      Huang J, Carpenter J H, Li C Z, Yu J S, Ade H, Jen A K Y. Adv Mater, 2016, 28(5):967-974  doi: 10.1002/adma.v28.5

    28. [28]

      Bin H, Gao L, Zhang Z. G, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7:13651  doi: 10.1038/ncomms13651

    29. [29]

      Bin H, Zhang Z. G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138(13):4657-4664  doi: 10.1021/jacs.6b01744

    30. [30]

      Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28(42):9423-9429
       

    31. [31]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21):7148-7151  doi: 10.1021/jacs.7b02677

    32. [32]

      Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1(7):16089
       

    33. [33]

      Li S, Zhang Z, Shi M, Li C Z, Chen H. Phys Chem Chem Phys, 2017, 19:3440-3458  doi: 10.1039/C6CP07465K

    34. [34]

      Zang Y, Li C Z, Chueh C C, Williams S T, Jiang W, Wang Z H, Yu J S, Jen A K Y. Adv Mater, 2014, 26(32):5708-5714  doi: 10.1002/adma.201401992

    35. [35]

      Li S, Liu W, Li C Z, Shi M, Chen H. Small, 2017, DOI:10.1002/smll.201701120  doi: 10.1002/smll.201701120

    36. [36]

      Beaujuge P M, Amb C M, Reynolds J R. Acc Chem Res, 2010, 43(11):1396-1407  doi: 10.1021/ar100043u

    37. [37]

      Henson Z B, Mullen K, Bazan G C. Nat Chem, 2012, 4(9):699-704  doi: 10.1038/nchem.1422

    38. [38]

      Zerdan R B, Shewmon N T, Zhu Y, Mudrick J P, Chesney K J, Xue J, Castellano R K. Adv Funct Mater, 2014, 24(38):5993-6004  doi: 10.1002/adfm.201401030

    39. [39]

      Qin H, Li L, Guo F, Su S, Peng J, Cao Y, Peng X. Energy Environ Sci, 2014, 7(4):1397-1401  doi: 10.1039/C3EE43761B

    40. [40]

      Xu J Q, Liu W, Liu S Y, Ling J, Mai J, Lu X, Li C Z, Jen A K Y, Chen H. Sci China Chem, 2017, 60(4):561-569  doi: 10.1007/s11426-016-9003-9

    41. [41]

      Ullah F, Qian S, Yang W, Shah M N, Zhang Z, Chen H, Li C Z. Chinese Chem Lett, 2017, DOI:10.1016/j.cclet.2017.08.009  doi: 10.1016/j.cclet.2017.08.009

    42. [42]

      Zhou J, Zuo Y, Wan X, Long G, Zhang Q, Ni W, Liu Y, Li Z, He G, Li C, Kan B, Li M, Chen Y. J Am Chem Soc, 2013, 135(23):8484-8487
       

    43. [43]

      Tang A, Zhan C, Yao J, Zhou E. Adv Mater, 2017, 29(2):1600013
       

    44. [44]

      Shahid M, McCarthy-Ward T, Labram J, Rossbauer S, Domingo E B, Watkins S E, Stingelin N, Anthopoulos T D, Heeney M. Chem Sci, 2012, 3(1):181-185  doi: 10.1039/C1SC00477H

    45. [45]

      Cho M J, Shin J, Yoon S H, Lee T W, Kaur M, Choi D H. Chem Commun, 2013, 49(64):7132-7134  doi: 10.1039/c3cc43742f

    46. [46]

      Ashraf R S, Meager I, Nikolka M, Kirkus M, Planells M, Schroeder B C, Holliday S, Hurhangee M, Nielsen C B, Sirringhaus H, McCulloch I. J Am Chem Soc, 2015, 137(3):1314-1321
       

    47. [47]

      Chen X, Zhang Z, Ding Z, Liu J, Wang L. Angew Chem Int Ed, 2016, 55(35):10376-10380  doi: 10.1002/anie.201602775

    48. [48]

      Liu Y, Chen C C, Hong Z, Gao J, Yang Y M, Zhou H, Dou L, Li G, Yang Y. Sci Rep, 2013, 3:3356  doi: 10.1038/srep03356

    49. [49]

      Li W, Hendriks K H, Furlan A, Roelofs W S C, Meskers S C J, Wienk M M, Janssen R A J. Adv Mater, 2014, 26(10):1565-1570  doi: 10.1002/adma.201304360

    50. [50]

      Fu L, Fu W, Cheng P, Xie Z, Fan C, Shi M, Ling J, Hou J, Zhan X, Chen H. J Mater Chem A, 2014, 2(18):6589-6597  doi: 10.1039/c3ta13534a

    51. [51]

      Liu S, Wu C, Li C Z, Liu S, Wei K, Chen H, Jen A K Y. Adv Sci, 2015, 2(4):1500014  doi: 10.1002/advs.201500014

    52. [52]

      Li W, Hendriks K H, Furlan A, Wienk M M, Janssen R A. J Am Chem Soc, 2015, 137(6):2231-2234  doi: 10.1021/ja5131897

    53. [53]

      Li W, Roelofs W S, Wienk M M, Janssen R A. J Am Chem Soc, 2012, 134(33):13787-13795  doi: 10.1021/ja305358z

    54. [54]

      Yue J, Liang J, Sun S, Zhong W, Lan L, Ying L, Yang W, Cao Y, Dyes Pigments, 2015, 123:64-71  doi: 10.1016/j.dyepig.2015.07.021

    55. [55]

      Li S, Liu W, Shi M, Mai J, Lau T K, Wan J, Lu X, Li C Z, Chen H. Energy Environ Sci, 2016, 9(2):604-610  doi: 10.1039/C5EE03481G

    56. [56]

      Liu W, Li S, Huang J, Yang S, Chen J, Zuo L, Shi M, Zhan X, Li C Z, Chen H. Adv Mater, 2016, 28, ,44, 9729-9734  doi: 10.1002/adma.201603518

    57. [57]

      Hendriks K H, Heintges G H, Gevaerts V S, Wienk M M, Janssen R A. Angew Chem Int Ed, 2013, 52(32):8341-8344  doi: 10.1002/anie.v52.32

    58. [58]

      Kang I, Yun H J, Chung D S, Kwon S K, Kim Y H. J Am Chem Soc, 2013, 135(40):14896-14899  doi: 10.1021/ja405112s

    59. [59]

      Goujon A, Du G, Moulin E, Fuks G, Maaloum M, Buhler E, Giuseppone N. Angew Chem Int Ed, 2016, 55(2):703-707
       

    60. [60]

      Li Q, Peng M, Li H, Zhong C, Zhang L, Cheng X, Peng X, Wang Q, Qin J, Li Z. Org Lett, 2012, 14(8):2094-2097  doi: 10.1021/ol300607m

  • 加载中
    1. [1]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    2. [2]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    3. [3]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    4. [4]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    5. [5]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    6. [6]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    8. [8]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    9. [9]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    10. [10]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    11. [11]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    12. [12]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    13. [13]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    14. [14]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    17. [17]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    18. [18]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

Metrics
  • PDF Downloads(0)
  • Abstract views(220)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return