Citation: Jing-qi Xu, Wei-fei Fu, Shi-da Yang, Tang Liu, Chang-zhi Li, Hong-zheng Chen. Interface Engineering in Organic and Organic/Inorganic Hybrid Solar Cells[J]. Acta Polymerica Sinica, ;2018, (2): 164-173. doi: 10.11777/j.issn1000-3304.2018.17251 shu

Interface Engineering in Organic and Organic/Inorganic Hybrid Solar Cells

  • Third generation solar cells including organic solar cells, perovskite solar cells have attracted much attention due to their advantages of low cost, solution processability and flexibility. The rapid progress in this field is attributed to the development of absorbing layers, interfacial materials or interfacial modification, device architectures and so on. Especially, the interfaces in the devices significantly affect the exciton dissociation, charge carrier transport and collection, and subsequently affect the device performance. This review focuses on the interface engineering in organic solar cells, polymer/nanocrystal hybrid solar cells and perovskite solar cells in our group. We summarize the strategies of designing effective interfacial materials including hole-transporting materials, electron-transporting materials and their modification to achieve ohmic contact at the interface of active layer and electrodes. A series of low-temperature solution processed low-cost inorganic materials and organic small molecules are developed. With appropriate energy levels, high mobility and low defect or ability to passivate perovskites, highly efficient organic and perovskite solar cells are achieved. Self-assembly monolayer technologies are also discussed here. It is an efficient way to modify the work function of electrodes to obtain ohmic contact between electrodes and active layer. On one hand, the self-assembly monolayer can also be used to passivate the defect of metal oxide buffer layer such as ZnO or TiO2 to reduce recombination, which may improve the morphology of perovskite film to enhance the performance. Plasmonic effect is introduced to enhance the light absorption of active layer by incorporating Au or Ag nanoparticles into the interface layers. At last, the optimized strategies for interface modification between polymer and nanocrystals to improve the exciton dissociation and charge transport are discussed in details. By attaching benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry, the nanocrystal-nanocrystal or polymer-nanocrystal distance is minimized. Furthermore, the "electroactive" π-orbitals of the benzenedithiol can further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. On the other hand, judicious choice of ligands with appropriate molecular dipoles has a strong impact on chemical and electronic structures at the polymer-nanocrystal interface and subsequently on photovoltaic device performance. With these strategies, highly efficient polymer/CdSe nanocrystal hybrid solar cells have been achieved. A few viewpoints on further developing interface engineering for high-performance solar cells are also provided.
  • 加载中
    1. [1]

      Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139(21):7148-7151.
       

    2. [2]

      Cui Y, Yao H, Gao B, Qin Y, Zhang S, Yang B, He C, Xu B, Hou J. J Am Chem Soc, 2017, 139(21):7302-7309
       

    3. [3]

      Dai Shuixing, Zhan Xiaowei. Acta Polymerica Sinica, 2017, (11):1706-1714
       

    4. [4]

      Bin Haijun, Li Yongfang. Acta Polymerica Sinica, 2017, (9):1444-1461
       

    5. [5]

      Yao Huifeng, Hou Jianhui. Acta Polymerica Sinica, 2016, (11):1468-1481
       

    6. [6]

      Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I. Science, 2017, 356(6345):1376-1379  doi: 10.1126/science.aan2301

    7. [7]

      Yang Zhisheng, Yang Ligong, Wu Gang, Wang Mang, Chen Hongzheng. Acta Chimica Sinica, 2011, 69(6):627-632
       

    8. [8]

      Zhang Kai, Huang Fei, Cao Yong. Acta Polymerica Sinica, 2017, (9):1400-1414
       

    9. [9]

      Dou L, You J, Hong Z, Xu Z, Li G, Street R A, Yang Y. Adv Mater, 2013, 25(46):6642-6671  doi: 10.1002/adma.v25.46

    10. [10]

      Tumbleston J R, Collins B A, Yang L Q, Stuart A C, Gann E, Ma W, You W, Ade H. Nat Photon, 2014, 8(5):385-391  doi: 10.1038/nphoton.2014.55

    11. [11]

      Zhou R, Stalder R, Xie D, Cao W, Zheng Y, Yang Y, Plaisant M, Holloway P H, Schanze K S, Reynolds J R, Xue J. ACS Nano, 2013, 7(6):4846-4854  doi: 10.1021/nn305823w

    12. [12]

      He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6(9):593-597

    13. [13]

      Gao Y, Yip H Y, Chen K S, O'Malley K M, Acton O, Sun Y, Ting G, Chen H, Jen A K Y. Adv Mater, 2011, 23(16):1903-1908  doi: 10.1002/adma.v23.16

    14. [14]

      Gao Y, Yip H L, Hau S K, O'Malley K M, Cho N C, Chen H, Jen A K Y. Appl Phys Lett, 2010, 97(20):203306
       

    15. [15]

      Liu W, Yang X, Zhang Y, Xu M, Chen Z. RSC Adv, 2014, 4(62):32744-32748  doi: 10.1039/C4RA04116J

    16. [16]

      Yang X, Liu W, Xiong M, Zhang Y, Liang T, Yang J, Xu M, Ye J, Chen H. J Mater Chem A, 2014, 2(36):14798-14806  doi: 10.1039/C4TA03178D

    17. [17]

      Yang X, Fu W, Liu W, Hong J, Cai Y, Jin C, Xu M, Wang H, Yang D, Chen H. J Mater Chem A, 2014, 2(21):7727-7733  doi: 10.1039/C4TA01336K

    18. [18]

      Yang W, Yu Z, Liu W, Li C Z, Chen H. J Polym Sci, Part A:Polym Chem, 2017, 55(4):747-753  doi: 10.1002/pola.28427

    19. [19]

      Yu Z, Liu W, Fu W, Zhang Z, Yang W, Wang S, Li H, Xu M, Chen H. J Mater Chem A, 2016, 4(14):5130-5136  doi: 10.1039/C6TA00909C

    20. [20]

      Yu Z K, Fu W F, Liu W Q, Zhang Z Q, Liu Y J, Yan J L, Ye T, Yang W T, Li H Y, Chen H Z. Chin Chem Lett, 2017, 28(1):13-18  doi: 10.1016/j.cclet.2016.06.021

    21. [21]

      Huang C, Fu W, Li C Z, Zhang Z, Qiu W, Shi M, Heremans P, Jen A K, Chen H. J Am Chem Soc, 2016, 138(8):2528-2531
       

    22. [22]

      Wang J, Liu K, Ma L, Zhan X. Chem Rev, 2016, 116(23):14675-14725  doi: 10.1021/acs.chemrev.6b00432

    23. [23]

      Agarwala P, Kabra D. J Mater Chem A, 2017, 5(4):1348-1373  doi: 10.1039/C6TA08449D

    24. [24]

      Chen H, Fu W, Huang C, Zhang Z, Li S, Ding F, Shi M, Li C Z, Jen A K Y, Chen H. Adv Energ Mater, 2017, 1700012
       

    25. [25]

      Zuo L, Zhang S, Dai S, Chen H. RSC Adv, 2015, 5(61):49369-49375
       

    26. [26]

      Liu W, Liang T, Chen Q, Yu Z, Zhang Y, Liu Y, Fu W, Tang F, Chen L, Chen H. ACS Appl Mater Interfaces, 2016, 8(14):9254-9261  doi: 10.1021/acsami.6b00327

    27. [27]

      Li C Z, Chueh C C, Ding F, Yip H L, Liang P W, Li X, Jen A K Y. Adv Mater, 2013, 25(32):4425-4430  doi: 10.1002/adma.v25.32

    28. [28]

      Li C Z, Liang P W, Sulas D B, Nguyen P D, Li X, Ginger D S, Schlenker C W, Jen A K Y. Mater Horiz, 2015, 2(4):414-419  doi: 10.1039/C5MH00026B

    29. [29]

      Wang L, Fu W, Gu Z, Fan C, Yang X, Li H, Chen H. J Mater Chem C, 2014, 2(43):9087-9090  doi: 10.1039/C4TC01875C

    30. [30]

      Gu Z, Chen F, Zhang X, Liu Y, Fan C, Wu G, Li H, Chen H. Sol Energ Mater Sol Cells, 2015, 140:396-404  doi: 10.1016/j.solmat.2015.04.015

    31. [31]

      Zhu Z, Xu J Q, Chueh C C, Liu H, Li Z A, Li X, Chen H, Jen A K Y. Adv Mater, 2016, 28(48):10786-10793  doi: 10.1002/adma.201601745

    32. [32]

      Zhao D, Zhu Z, Kuo M Y, Chueh C C, Jen A K Y. Angew Chem Int Ed, 2016, 55(31):8999-9003
       

    33. [33]

      Alloway D M, Hofmann M, Smith D L, Gruhn N E, Graham A L, Colorado R, Wysocki V H, Lee T R, Lee P A, Armstrong N R. J Phys Chem B, 2003, 107(42):11690-11699  doi: 10.1021/jp034665+

    34. [34]

      Alloway D M, Graham A L, Yang X, Mudalige A, Colorado R, Wysocki V H, Pemberton J E, Lee T R, Wysocki R J, Armstrong N R. J Phys Chem C, 2009, 113(47):20328-20334

    35. [35]

      Song C K, White A C, Zeng L, Leever B J, Clark M D, Emery J D, Lou S J, Timalsina A, Chen L X, Bedzyk M J, Marks T J. ACS Appl Mater Interfaces, 2013, 5(18):9224-9240  doi: 10.1021/am4030609

    36. [36]

      Ganzorig C, Kwak K J, Yagi K, Fujihira M. Appl Phys Lett, 2001, 79(2):272-274  doi: 10.1063/1.1384896

    37. [37]

      Paramonov P B, Paniagua S A, Hotchkiss P J, Jones S C, Armstrong N R, Marder S R, Brédas J L. Chem Mater, 2008, 20(16):5131-5133  doi: 10.1021/cm8014622

    38. [38]

      Hotchkiss P J, Li H, Paramonov P B, Paniagua S A, Jones S C, Armstrong N R, Brédas J L, Marder S R. Adv Mater, 2009, 21(44):4496-4501
       

    39. [39]

      Gu Z, Zuo L, Larsen-Olsen T T, Ye T, Wu G, Krebs F C, Chen H. J Mater Chem A, 2015, 3(48):24254-24260
       

    40. [40]

      Zuo L, Gu Z, Ye T, Fu W, Wu G, Li H, Chen H. J Am Chem Soc, 2015, 137(7):2674-2679  doi: 10.1021/ja512518r

    41. [41]

      Li C Z, Huang J, Ju H, Zang Y, Zhang J, Zhu J, Chen H, Jen A K Y. Adv Mater, 2016, 28(33):7269-7275  doi: 10.1002/adma.201601161

    42. [42]

      Huang J, Zhang X, Zheng D, Yan K, Li C Z, Yu J. Sol RRL, 2017, 1(1):1600008  doi: 10.1002/solr.201600008

    43. [43]

      Huang J, Wang H, Yan K, Zhang X, Chen H, Li C Z, Yu J. Adv Mater, 2017, 29(19):1606729  doi: 10.1002/adma.v29.19

    44. [44]

      Yang X, Liu W, Chen H. Sci China Chem, 2015, 58(2):210  doi: 10.1007/s11426-014-5219-3

    45. [45]

      Chen X, Yang X, Fu W, Xu M, Chen H. Mater Sci Eng:B, 2013, 178(1):53-59  doi: 10.1016/j.mseb.2012.10.024

    46. [46]

      Fu W F, Chen X, Yang X, Wang L, Shi Y, Shi M, Li H Y, Jen A K Y, Chen J W, Cao Y, Chen H Z. Phys Chem Chem Phys, 2013, 15(40):17105-17111  doi: 10.1039/c3cp52723a

    47. [47]

      Singh A, Dey A, Das D, Iyer P K. J Mater Chem C, 2017, 5(26):6578-6587  doi: 10.1039/C7TC01621B

    48. [48]

      Li Q, Wang F, Bai Y, Xu L, Yang Y, Yan L, Hu S, Zhang B, Dai S, Tan Z A. Org Electron, 2017, 43:33-40  doi: 10.1016/j.orgel.2017.01.010

    49. [49]

      Fung D D S, Qiao L, Choy W C H, Wang C, Sha W E I, Xie F, He S. J Mater Chem, 2011, 21(41):16349-16356
       

    50. [50]

      Yang X, Chueh C C, Li C Z, Yip H L, Yin P, Chen H, Chen W C, Jen A K Y. Adv Energy Mater, 2013, 3(5):666-673  doi: 10.1002/aenm.v3.5

    51. [51]

      Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W. Org Electron, 2017, 48:336-341  doi: 10.1016/j.orgel.2017.06.003

    52. [52]

      Deibel C, Strobel T, Dyakonov V. Adv Mater, 2010, 22(37):4097-4111  doi: 10.1002/adma.v22:37

    53. [53]

      Tumbleston J R, Collins B A, Yang L, Stuart A C, Gann E, Ma W, You W, Ade H. Nat Photon, 2014, 8(5):385-391  doi: 10.1038/nphoton.2014.55

    54. [54]

      Fu W, Shi Y, Qiu W, Wang L, Nan Y, Shi M, Li H, Chen H. Phys Chem Chem Phys, 2012, 14(35):12094-12098
       

    55. [55]

      Fu W, Wang L, Zhang Y, Ma R, Zuo L, Mai J, Lau T K, Du S, Lu X, Shi M, Li H, Chen H. ACS Appl Mater Interfaces, 2014, 6(21):19154-19160

    56. [56]

      Fu W, Wang L, Ling J, Li H, Shi M, Xue J, Chen H. Nanoscale, 2014, 6(18):10545-10550  doi: 10.1039/C4NR02339K

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    4. [4]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    7. [7]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    8. [8]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    9. [9]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    10. [10]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025

    11. [11]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    12. [12]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    13. [13]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    14. [14]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Zhen FANJiayan WANGWenhao ZHUXiuchun ZHANGYang WANGHao LIZeyuan WANGSongzhi ZHENGWeihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191

    16. [16]

      Binbin LiuYang ChenTianci JiaChen ChenZhanghao WuYuhui LiuYuhang ZhaiTianshu MaChanglei Wang . Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells. Acta Physico-Chimica Sinica, 2026, 42(1): 100128-0. doi: 10.1016/j.actphy.2025.100128

    17. [17]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    18. [18]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    19. [19]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    20. [20]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

Metrics
  • PDF Downloads(0)
  • Abstract views(182)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return