Citation: Xiao-yi Sun, Jin-yu Li, Hui Liu, Ping Lu. Design, Synthesis and Optoelectronic Properties of Silicon-containing Wide Bandgap Light-emitting Polymers[J]. Acta Polymerica Sinica, ;2018, (2): 284-294. doi: 10.11777/j.issn1000-3304.2018.17247 shu

Design, Synthesis and Optoelectronic Properties of Silicon-containing Wide Bandgap Light-emitting Polymers

  • Corresponding author: Ping Lu, lup@jlu.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 22 September 2017

  • The development of deep-blue light-emitting materials is of vital importance in organic light emitting diodes (OLEDs). Deep blue emission can efficiently reduce the power consumption in full-color displays. In this study, aiming at developing solution-processable materials for low-cost OLEDs, a series of wide bandgap polymers using tetraphenylsilane as the main chain and phenanthro[9, 10-d] imidazole (PPI) as the side chain were designed and successfully synthesized via Suzuki coupling reactions. The silane group provides the polymers with wide bandgaps, and PPI unit entitles the polymers with high quantum efficiencies. All the polymers show good solubility in common organic solvents even without long alkyl chains. The emission spectra are all located in deep-blue region in THF peaking at 421 nm. P1 , P2 and P4 show high quantum efficiencies of 82.3%-99.6% in THF. P3 exhibits a relatively low efficiency of 34.0% due to the intramolecular interactions caused by the dibenzo[b, d]thiophene-5, 5-dioxide in the mainchain. And only a few red-shifts in emission spectra are observed in the solid state. They also possess high thermal stability, good morphological stability and appropriate highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels. AFM characterization presents that the spin-coating film of the polymers display fairly homogenous and smooth surface morphology with the root mean square roughness of 0.57-0.71 nm. The non-doped solution-processed devices are fabricated with a configuration of ITO/PEDOT:PSS (40 nm)/EML (20 nm)/TPBi (30 nm)/LiF (1.2 nm)/Al (120 nm). Among them, the device using P1 as emissive layer shows the best performance with a relatively high external quantum efficiency of 0.65% and deep blue CIE coordinates of (0.163, 0.099). The maximum peak of EL emission was at 420 nm with narrow full width at half maximum (FWHM). All of these results gives us a new foreground for the design of deep-blue light-emitting polymers and inspire its application in the future.
  • 加载中
    1. [1]

      Hosokawa C, Eida E, Matuura M, Fukuoka F, Nakamura H, Kusumoto T. J Soc Inf Display, 1997, 5(4):331-338  doi: 10.1889/1.1985172

    2. [2]

      Whang D R, You Y, Kim S H, Jeong W I, Park Y S, Kim J J, Park S Y. Appl Phys Lett, 2007, 91(23):233501  doi: 10.1063/1.2821116

    3. [3]

      Gong S L, Sun N, Luo J J, Zhong C, Ma D G, Qin J G, Yang C L. Adv Funct Mater, 2014, 24(36):5710-5718  doi: 10.1002/adfm.v24.36

    4. [4]

      Yin X J, Xie G H, Peng Y H, Wang B W, Chen T H, Li S Q, Zhang W H, Wang L, Yang C L. Adv Funct Mater, 2017, 27(26):1700695  doi: 10.1002/adfm.v27.26

    5. [5]

      Peng F, Xu J, Zhang Y H, He R F, Yang W, Cao Y. J Polym Sci, Part A:Polym Chem, 2017, 55(14):2332-2341  doi: 10.1002/pola.v55.14

    6. [6]

      Huang Hongliang, Chen Bo, Ma Zhihua, Ding Junqiao, Wang Lixiang. Acta Polymerica Sinica, 2013, (5):626-634
       

    7. [7]

      Fan Z K, Li N Q, Quan Y W, Chen Q M, Ye S H, Fan Q L, Huang W. J Polym Sci, Part A:Polym Chem, 2016, 54(6):795-801  doi: 10.1002/pola.v54.6

    8. [8]

      Cook J H, Santos J, Al-Attar H A, Bryce M R, Monkman A P. J Mater Chem C, 2015, 3(37):9664-9669  doi: 10.1039/C5TC02162F

    9. [9]

      Giovanella U, Botta C, Galeotti F, Vercelli B, Battiato S, Pasini M. J Mater Chem C, 2013, 1(34):5322  doi: 10.1039/c3tc31139b

    10. [10]

      Santos J, Cook J H, Al-Attar H A, Monkman A P, Bryce M R. J Mater Chem C, 2015, 3(11):2479-2483  doi: 10.1039/C4TC02766C

    11. [11]

      Yang X L, Xu X B, Zhou G J. J Mater Chem C, 2015, 3(5):913-944  doi: 10.1039/C4TC02474E

    12. [12]

      Yu M Q, Wang S M, Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. J Mater Chem C, 2015, 3(4):861-869  doi: 10.1039/C4TC02173H

    13. [13]

      Jin G R, Xia L P, Liu Z, Lin H, Ling J, Wu H B, Hou L T, Mo Y Q. J Mater Chem C, 2016, 4(5):905-913  doi: 10.1039/C5TC03665H

    14. [14]

      Takanobu S, Takahiro S, Chizuko K, Hideki S. J Am Chem Soc, 1998, 120:4552-4553  doi: 10.1021/ja973252h

    15. [15]

      Sun D M, Ren Z J, Bryce M R, Yan S K. J Mater Chem C, 2015, 3(37):9496-9508  doi: 10.1039/C5TC01638J

    16. [16]

      Gao Z, Cheng G, Shen F Z, Zhang S T, Zhang Y, Lu P, Ma Y G. Laser Photonics Revi, 2014, 8(1):L6-L10  doi: 10.1002/lpor.201300141

    17. [17]

      Tang X Y, Yao L, Liu H, Shen F Z, Zhang S T, Zhang H H, Lu P, Ma Y G. Chemistry, 2014, 20(25):7589-7592  doi: 10.1002/chem.201402152

    18. [18]

      Liu H, Bai Q, Yao L, Hu D, Tang X Y, Shen F Z, Zhang H H, Gao Y, Lu P, Yang B, Ma Y G. Adv Funct Mater, 2014, 24(37):5881-5888  doi: 10.1002/adfm.201401183

    19. [19]

      Hu D H, Cheng G, Lu P, Liu H, Shen F Z, Li F H, Lv Y, Dong W Y, Ma Y G. Macromol Rapid Commun, 2011, 32(18):1467-1471  doi: 10.1002/marc.v32.18

    20. [20]

      Liu H, Cheng G, Hu D H, Shen F Z, Lv Y, Sun G N, Yang B, Lu P, Ma Y G. Adv Funct Mater, 2012, 22(13):2830 -2836  doi: 10.1002/adfm.v22.13

    21. [21]

      Gong S L, Chen Y H, Yang C L, Zhong C, Qin J G, Ma D G. Adv Mater, 2010, 22(47):5370-5373  doi: 10.1002/adma.201002732

    22. [22]

      Yu L, Liu J, Hu S J, He R F, Yang W, Wu H B, Peng J B, Xia R D, Bradley D D C. Adv Funct Mater, 2013, 23(35):4366-4376  doi: 10.1002/adfm.v23.35

    23. [23]

      Wang X C, Zhao L, Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. Macromolecules, 2014, 47(9):2907-2914  doi: 10.1021/ma500407m

    24. [24]

      Peng F, Guo T, Ying L, Yang W, Peng J B, Cao Y. Org Electron, 2017, 48:118-126  doi: 10.1016/j.orgel.2017.05.037

    25. [25]

      Kamtekar K T, Vaughan H L, Lyons B P, Monkman A P, Pandya S U, Bryce M R. Macromolecules, 2010, 43(10): 4481 -4488  doi: 10.1021/ma100566p

    26. [26]

      Cook J H, Santos J, Li H Y, Al-Attar H A, Bryce M R, Monkman A P. J Mater Chem C, 2014, 2(28):5587-5592  doi: 10.1039/C4TC00896K

    27. [27]

      Li Y Y, Wu H B, Zou J H, Ying L, Yang W, Cao Y. Org Electron, 2009, 10(5):901-909  doi: 10.1016/j.orgel.2009.04.021

    28. [28]

      Li G, Zhao J W, Zhang D, Zhu J J, Shi Z C, Tao S L, Lu F, Tong Q X. New J Chem, 2017, 41(12):5191-5197  doi: 10.1039/C7NJ00155J

    29. [29]

      Li C L, Li Z Q, Yan X J, Zhang Y W, Zhang Z L, Wang Y. J Mater Chem C, 2017, 5(8):1973-1980  doi: 10.1039/C6TC05639C

    30. [30]

      Shan T, Liu Y L, Tang X Y, Bai Q, Gao Y, Gao Z, Li J Y, Deng J, Yang B, Lu P, Ma Y G. ACS Appl Mater Interfaces, 2016, 8(42):28771-28779  doi: 10.1021/acsami.6b10004

    31. [31]

      Tang X Y, Shan T, Bai Q, Ma H W, He X, Lu P. Chem Asian J, 2017, 12(5):552-560  doi: 10.1002/asia.v12.5

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    3. [3]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    4. [4]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    5. [5]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    6. [6]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    9. [9]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    10. [10]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    13. [13]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    14. [14]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    15. [15]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    16. [16]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    17. [17]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    18. [18]

      Yerong Chen Bingbin Yang Xinglei He Yuqi Lin Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054

    19. [19]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    20. [20]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

Metrics
  • PDF Downloads(0)
  • Abstract views(232)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return