Citation: Zhi-ming Hu, Hui Chen, Xiao-wei Zhong, Jian-fei Qu, Wei Chen, An-hua Liu, Feng He. Design and Synthesis of Halogen Atom Substituted Benzothiadiazole-based Donor Polymers for Efficient Solar Energy Conversion[J]. Acta Polymerica Sinica, ;2018, (2): 273-283. doi: 10.11777/j.issn1000-3304.2018.17243 shu

Design and Synthesis of Halogen Atom Substituted Benzothiadiazole-based Donor Polymers for Efficient Solar Energy Conversion

  • Halogen substituted benzothiadiazole polymers with different length of alkyl side chains were synthesized via Stille coupling and used as donor materials in polymer solar cells (PSC). These polymers exhibited good solubility in common organic solvents, excellent film forming ability, and broad absorption properly towards the sun light. By introducing the halogen atoms to the backbone, in particularly the large chlorine atoms, fullerene-based (PC71BM) bulk heterojunction PSCs of these polymers could achieve enhanced open-circuit voltage and short-circuit current, and eventually the power conversion efficiency could be dramatically improved. It was found that the halogen substitution and various alkyl side chains could highly affect the polymers' band gaps and charge transport properties, through influencing the molecular orientation and crystallinity. With regard to tuning the energy levels, compared with fluorine atom, chlorine atom with a bigger atomic radius could reduce more efficiently the energy levels, thereby further improving the open-circuit voltage of the corresponding PSCs. In this study, the PSCs based on one-chlorine-and-one-fluorine-substituted PCFBT4T-2OD, with PC71BM used as the acceptor, exhibited an open-circuit voltage of 0.72 V, a short-circuit current of 17.61 mA cm-2, and the highest power conversion efficiency of 8.84%. From the grazing-incidence wide-angle X-ray scattering (GIWAXS) experiments, those polymers with the halogen atoms substitutions showed a mixed "face-on" and "edge-on" conformation in their blended films. The introduction of fluorine atoms in the polymer PCFBT4T-2OD further enhanced the π-π stacking, compared with the one-chlorine substituted PCBT4T-2BO, which was helpful for the charge transport in the active layer and to enhance the device performance in PSCs. Those results demonstrated that the halogen substitution was an effective molecular design strategy to modify the polymer aggregation and morphology for optimized polymer solar cell applications.
  • 加载中
    1. [1]

      Ashraf R S, Schroeder B C, Bronstein H A, Huang Z, Thomas S, Kline R J, Brabec C J, Rannou P, Anthopoulos T D, Durrant J R, McCulloch I. Adv Mater, 2013, 25(14):2029-2034  doi: 10.1002/adma.201300027

    2. [2]

      Dkhil S B, Pfannmöller M, Bals S, Koganezawa T, Yoshimoto N, Hannani D, Gaceur M, Videlot-Ackermann C, Margeat O, Ackermann J. Adv Energy Mater, 2016, 13:290-300
       

    3. [3]

      He F, Cheng G, Zhang H, Zheng Y, Xie Z, Yang B, Ma Y, Liu S, Shen J. Chem Commun, 2003, 17:2206-2207
       

    4. [4]

      Fan B, Xue X, Meng X, Sun X, Huo L, Ma W, Sun Y. J Mater Chem A, 2016, 4:13930-13937  doi: 10.1039/C6TA05886H

    5. [5]

      He F, Yu L. J Phys Chem Lett, 2011, 2(24):3102-3113  doi: 10.1021/jz201479b

    6. [6]

      Lu L, Zheng T, Wu Q, Schneider A M, Zhao D, Yu L. Chem Rev, 2015, 115:12666-12731  doi: 10.1021/acs.chemrev.5b00098

    7. [7]

      Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang H Q, Fang J. Adv Mater, 2016, 28(34):7405-7412  doi: 10.1002/adma.201601814

    8. [8]

      Ma W, Yang G, Jiang K, Carpenter J H, Wu Y, Meng X, McAfee T, Zhao J, Zhu C, Wang C, Ade H, Yan H. Adv Energy Mater, 2015, 5(23):1501400  doi: 10.1002/aenm.201501400

    9. [9]

      Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4(11):864-868  doi: 10.1038/nmat1500

    10. [10]

      Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137(44):14149-14157  doi: 10.1021/jacs.5b08556

    11. [11]

      Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, Prasad S K K, Zhu J, Huo L, Bin H, Zhang Z G, Guo X, Zhang M, Sun Y, Gao F, Wei Z, Ma W, Wang C, Hodgkiss J, Bo Z, Inganäs O, Li Y, Zhan X. Adv Mater, 2016, 3:1604155

    12. [12]

      Yao J, Yu C, Liu Z, Luo H, Yang Y, Zhang G, Zhang D. J Am Chem Soc, 2016, 138(1):173-185  doi: 10.1021/jacs.5b09737

    13. [13]

      Yang Shu, Zhang Wei, Shen Xingxing, Liu Ying, Du Xiaoyan, Chen Shan, Xiao Zuo, Yang Zhenyu, Zuo Qiqun, Ding Liming. Acta Polymerica Sinica, 2012, (8):838-845
       

    14. [14]

      van Pham C, Mark H, Zimmer H. Synth Commun, 1986, 16(6):689-696  doi: 10.1080/00397918608057741

    15. [15]

      Li M, Gao K, Wan X, Zhang Q, Kan B, Xia R, Liu F, Yang X, Feng H, Ni W, Wang Y, Peng J, Zhang H, Liang Z, Yip H L, Peng X, Cao Y, Chen Y. Nat Photon, 2016, 11(2):85-90
       

    16. [16]

      Chen C C, Chang W H, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. Adv Mater, 2014, 26(32):5670-5677  doi: 10.1002/adma.201402072

    17. [17]

      Yusoff A R b M, Kim D, Kim H P, Shneider F K, da Silva W J, Jang J. Energy Environ Sci, 2015, 8(1):303-316  doi: 10.1039/C4EE03048F

    18. [18]

      Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270:1789-1971  doi: 10.1126/science.270.5243.1789

    19. [19]

      He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Nat Photonics, 2015, 9(3):174-179  doi: 10.1038/nphoton.2015.6

    20. [20]

      Wang Y, Parkin S R, Gierschner J, Watson M D. Org Lett, 2008, 10(15):3307-3310  doi: 10.1021/ol8003468

    21. [21]

      Albrecht S, Janietz S, Schindler W, Frisch J, Kurpiers J, Kniepert J, Inal S, Pingel P, Fostiropoulos K, Koch N, Neher D. J Am Chem Soc, 2012, 134(36):14932-14944  doi: 10.1021/ja305039j

    22. [22]

      Wang Y, Xin X, Lu Y, Xiao T, Xu X, Zhao N, Hu X, Ong B S, Ng S C. Macromolecules 2013, 46(24):9587-9592  doi: 10.1021/ma401709r

    23. [23]

      Dang M. T, Hirsch L, Wantz G, Wuest J D. Chem Rev, 2013, 113(5):3734-65  doi: 10.1021/cr300005u

    24. [24]

      Zhou H, Yang L, Xiao S, Liu S, You W. Macromolecules, 2010, 43(2):811-820  doi: 10.1021/ma902241b

    25. [25]

      Zhang S, Qin Y, Uddin M A, Jang B, Zhao W, Liu D, Woo H Y, Hou J. Macromolecules, 2016, 49(8):2993-3000  doi: 10.1021/acs.macromol.6b00248

    26. [26]

      Jo J W, Jung J W, Wang H W, Kim P, Russell T P, Jo W H. Chem Mater, 2014, 26(14):4214-4220  doi: 10.1021/cm502229k

    27. [27]

      Wang E, Wang L, Lan L, Luo C, Zhuang W, Peng J, Cao Y. Appl Phys Lett, 2008, 92(3):033307  doi: 10.1063/1.2836266

    28. [28]

      Allard N, Aïch R d B, Gendron D, Boudreault P L T, Tessier C, Alem S, Tse S C, Tao Y, Leclerc M. Macromolecules, 2010, 43(5):2328-2333  doi: 10.1021/ma9025866

    29. [29]

      Hu Z M, Chen H, Qu J F, Zhong X W, Chao P J, Xie M, Lu W, Liu A H, Tian L L, Su Y A, Chen W, He F. ACS Energy Lett, 2017, 2:753-758  doi: 10.1021/acsenergylett.7b00092

  • 加载中
    1. [1]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    2. [2]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    3. [3]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    4. [4]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    8. [8]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    9. [9]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    10. [10]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-0. doi: 10.3866/PKU.WHXB202408007

    11. [11]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    12. [12]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    17. [17]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    18. [18]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    19. [19]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(0)
  • Abstract views(232)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return