Citation: Wang Xu-chao, Bai Ke-yan, Ding Jun-qiao, Wang Li-xiang. Synthesis and Characterization of Bipolar Blue-emitting Poly(spirobifluorene)s Containing Carbazole and Arylphosphine Oxide[J]. Acta Polymerica Sinica, ;2018, (2): 239-247. doi: 10.11777/j.issn1000-3304.2018.17193 shu

Synthesis and Characterization of Bipolar Blue-emitting Poly(spirobifluorene)s Containing Carbazole and Arylphosphine Oxide

  • A series of bipolar blue-emitting poly(spirobifluorene)s, named PSFCzPO10, PSFCzPO20 and PSFCzPO30, have been designed and synthesized via Suzuki polycondensation, where carbazole and arylphosphine oxide are incorporated as the hole-and electron-transporting units, respectively. These resultant poly(spirobifluorene)s are thermally stable with decomposition temperatures up to 380 ℃ and no glass transition or melting behaviors are observed in the range of 25-280 ℃, which are beneficial for the fabrication of long-trem PLEDs. Moreover, compared to the reference polymer Cz-PSF only containing carbazole, the introduction of the arylphosphine oxide unit does not obviously affect their photoluminescence (PL) and the corresponding PL quantum yields of PSFCzPO10-PSFCzPO30 in solid states. However, with increasing content of the arylphosphine oxide, the lowest unoccupied molecular orbital (LUMO) levels are lowered from -2.22 eV for Cz-PSF to -2.68 eV for PSFCzPO30, whereas the highest occupied molecular orbital (HOMO) levels remain nearly unchanged (-5.39~-5.40 eV). This trend implies the favored electron injection and transporting although the hole injection barriers seem to be the same for all the polymers. That is, the bipolar transporting and thus charge balance to some degree are within our expectation for PSFCzPO10-PSFCzPO30. Among them, PSFCzPO10 exhibits the best current efficiency of 1.19 cd A-1 based on a single-layer device structure, which is about twofolds higher than that of Cz-PSF (0.39 cd A-1). In addition, with PSFCzPO10 as the emitting layer and TPPO as the alcohol-soluble electron-transporting layer, the corresponding all-solution-processed multilayer device is successfully assembled through orthogonal sequential solvent processing. And its current efficiency is further up to 1.93 cd A-1 together with CIE coordinates of (0.16, 0.14). Meanwhile, the electroluminescence is nearly independent of the driving voltages, indicative of the good blue spectral stability. These results clearly demonstrate that the bipolar design is a promising strategy to improve the efficiency and stability of blue-emitting poly(spirobifluorene)s applied in PLEDs.
  • 加载中
    1. [1]

      Burroughes J H, Bradley D D C, Brown A B, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347:539-541  doi: 10.1038/347539a0

    2. [2]

      Birnstock J, Blässing J, Hunze A, Stößel M S, Heuser K, Wittmann G, Winnacker J W. Appl Phys Lett, 2001, 78:3905 -3907  doi: 10.1063/1.1379594

    3. [3]

      Shao S Y, Ding J Q, Wang L X. Chin Chem Lett, 2016, 27:1201-1208  doi: 10.1016/j.cclet.2016.07.006

    4. [4]

      Villani F, Vacca P, Nenna G, Valentino O, Burrasca G, Fasolino T, Minarini C, Sala D. J Phys Chem C, 2009, 113:13398 -13402

    5. [5]

      Sandström A, Dam H F, Krebs F C, Edman L. Nat Commun, 2012, 3:1002  doi: 10.1038/ncomms2002

    6. [6]

      Grice A W, Bradley D D C, Bernius M T, Inbasekaran M. Wu W W, Woo E P. Appl Phys Lett, 1998, 73:629-631  doi: 10.1063/1.121878

    7. [7]

      Huang F, Zhang Y, Liu M S, Cheng Y J, Jen A K Y. Adv Funct Mater, 2007, 17:3808-3815  doi: 10.1002/(ISSN)1616-3028

    8. [8]

      Bernius M T, Inbasekaran M, O'Brien J, Wu W. Adv Mater, 2000, 12:1737-1750  doi: 10.1002/(ISSN)1521-4095

    9. [9]

      Zhao Q, Liu S J, Huang W. Macromol. Chem Phys, 2009, 210:1580-1590  doi: 10.1002/macp.v210:19

    10. [10]

      Sun M M, Wang W, Liang L Y, Yan S H, Zhou M L, Ling Q D. Chinese J Polym Sci, 2015, 33:783-791  doi: 10.1007/s10118-015-1555-9

    11. [11]

      Zhang H, Zhang G, Xu J K, Wen Y P, Ding W C, Zhang J, Ming S L, Zhen S J. Chinese J Polym Sci, 2016, 34:229-241  doi: 10.1007/s10118-016-1742-3

    12. [12]

      Liu J, Zhou Q G, Cheng Y X, Geng, Y H, Wang L X, Ma D G, Jing X B, Wang F S. Adv Mater, 2005, 17:2974-2978  doi: 10.1002/(ISSN)1521-4095

    13. [13]

      Liu J, Chen L, Shao S Y, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv Mater, 2007, 19:4224 -4228  doi: 10.1002/(ISSN)1521-4095

    14. [14]

      Yu L, Liu J, Hu S J, He R F, Yang W, Wu H B, Peng J B, Xia R D, Bradley D D C. Adv Funct Mater, 2013, 23:4366 -4376

    15. [15]

      Prieto I, Teetsov J, Fox M A, Vanden Bout D A, Bard A J. J Phys Chem A, 2001, 105:520-523

    16. [16]

      List E J W, Guentner R, Scanducci de Freitas P, Scherf U. Adv Mater, 2002, 14:374-378  doi: 10.1002/1521-4095(20020304)14:5<374::AID-ADMA374>3.0.CO;2-U

    17. [17]

      Zojer E, Pogantsch A, Hennebicq E, Beljonne D, Brédas J L, Scandiucci de Freitas P, Scherf U, List E J W. J. Chem Phys, 2002, 117:6794-6802  doi: 10.1063/1.1507106

    18. [18]

      Bliznyuk V N, Carter S A, Scott J C, Klärner G, Miller R D, Miller D C. Macromolecules, 1999, 32:361-369  doi: 10.1021/ma9808979

    19. [19]

      Lupton J M, Craig M R, Meijer E W. Appl Phys Lett, 2002, 80:4489-4491  doi: 10.1063/1.1486482

    20. [20]

      Gaal M, List E J W, Scherf U. Macromolecules, 2003, 36:4236-4237  doi: 10.1021/ma021614m

    21. [21]

      Romaner L, Pogantsch A, Scandiucci de Freitas P, Scherf U, Gaal M, Zojer E, List E J W. Adv Funct Mater, 2003, 13:597-601  doi: 10.1002/(ISSN)1616-3028

    22. [22]

      Wu Y G, Li J, Fu Y Q, Bo Z S. Org Lett, 2004, 6:3485-3487  doi: 10.1021/ol048709o

    23. [23]

      Müller C D, Falcou A, Reckefuss N, Rojahn M, Wiederhirn V, Rudati P, Frohne H, Nuyken O, Becker H, Meerholz K. Nature, 2003, 421:829-833  doi: 10.1038/nature01390

    24. [24]

      Wang X C, Zhao L, Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. Macromolecules, 2014, 47:2907-2914  doi: 10.1021/ma500407m

    25. [25]

      Yang J W, Zhao L, Wang X C, Wang S M, Ding J Q, Wang L X, Jing X B, Wang F S. Macromol Chem Phys, 2014, 215:1107-1115  doi: 10.1002/macp.201400046

    26. [26]

      Bai K Y, Wang S M, Zhao L, Ding J Q, Wang L X. Polym Chem, 2017, 8:2182-2188  doi: 10.1039/C7PY00216E

    27. [27]

      Wang X C, Zhao L, Shao S Y, Ding J Q, Wang L X, Jing X B, Wang F S. Polym Chem, 2014, 5:6444-6451  doi: 10.1039/C4PY00698D

    28. [28]

      Jeon S O, Yook K S, Joo C W, Lee J Y. Org Electron, 2010, 11:881-886  doi: 10.1016/j.orgel.2010.02.003

  • 加载中
    1. [1]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    2. [2]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    3. [3]

      Xuyu WANGXinran XIEDengke CAO . Photoreaction characteristics and luminescence modulation in phosphine-anthracene-based Au(Ⅰ) and Ir(Ⅲ) complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1513-1522. doi: 10.11862/CJIC.20250113

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    7. [7]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    8. [8]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    9. [9]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    10. [10]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    11. [11]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    12. [12]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    15. [15]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    18. [18]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    19. [19]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    20. [20]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

Metrics
  • PDF Downloads(0)
  • Abstract views(198)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return