Citation: Chang Liu, Yu-xin Chen, Jiang-fan Wang, Xuan Luo, Yu-di Huang, Jin-lei Xu, Guo-ping Yan, Si Chen, Xian-zheng Zhang. A Multi-functional Drug Delivery System Based on Dendritic Peptide for Tumor Nuclear Accurate Targeting Therapy[J]. Acta Polymerica Sinica, ;2018, 0(6): 682-691. doi: 10.11777/j.issn1000-3304.2017.17335 shu

A Multi-functional Drug Delivery System Based on Dendritic Peptide for Tumor Nuclear Accurate Targeting Therapy

  • Though chemotherapeutics has been one of the most widely used treatments for tumor therapy, it is still heavily limited due to its poor pharmacokinetics, undesirable intracellular uptake and inevitable side effects. In order to overcome these barriers, various functional groups have been introduced in drug delivery system to enhance the therapeutic efficiency of chemotherapy. In this study, a novel drug delivery system for tumor nuclear accurate targeting was designed in order to achieve precise tumor nuclear treatment. The chemotherapeutic drug (doxorubicin, DOX) was encapsulated in amphiphilic dendritic peptide with nuclear localization function to form a regular nanoparticle DD. After that, electronegative hyaluronic acid (HA) with ability of tumor targeting was coated on the surface of nanoparticle DD via electrostatic interaction to form tumor nuclear targeting drug delivery system HDD. The presence of HA endowed HDD with the tumor targeting ability and charge shielding effect, which could increase the stability of nanodrug, promote the specific internalization by tumor cells and reduce the non-specific uptake by normal tissue/cells. Furthermore, it was found that the drug delivery system HDD could realize the facile internalization by tumor cells via CD44 receptor-mediated recognition. After the degradation of HA shell by hyaluronidase (HAase) in endosome, the nuclear targeted nanodrug DD was exposed, and DOX was carried to the region of nuclear accurately by inheriting the ability from nuclear-targeted peptide. The precise targeting of drug to nuclei could be beneficial to the improvement of drug utilization as well as the suppression of tumor cells. The characteristics of this tumor nuclear accurate targeting drug delivery system, including particle sizes, zeta potential, drug loading capacity, drug release behavior, cellular uptake and antitumor efficacy, were evaluated. All of the studies confirmed that the precise tumor nuclear targeting drug delivery system HDD displayed prominent antitumor efficacy with insignificant adverse effects to normal cells in vitro, which indicated that the precise tumor nuclear targeting delivery system supplies a useful strategy for tumor therapy.
  • 加载中
    1. [1]

      Zhang J, Yuan Z F, Wang Y, Chen W H, Luo G F, Cheng S X, Zhuo R X, Zhang X Z. J Am Chem Soc, 2013, 135: 5068-5073

    2. [2]

      Li D, Tang Z M, Gao Y Q, Sun H L, Zhou S B. Adv Funct Mater, 2016, 26: 66-79

    3. [3]

      Sun Q, Sun X, Ma X, Zhou Z, Jin E, Zhang B, Shen Y, van Kirk E A, Murdoch W J, Lott J R, Lodge T P, Radosz M, Lodge T P. Adv Mater, 2014, 26: 7615-7621

    4. [4]

      Brannon-Peppas L, Blanchette J O. Adv Drug Delivery Rev, 2012, 64: 206-212

    5. [5]

      Manzoor A A, Lindner L H, Landon C D, Park J Y, Simnick A J, Dreher M R, Das S, Hanna G, Park W, Koning G A. Cancer Res, 2012, 72: 5566-5575

    6. [6]

      Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Nat Nanotechnol, 2011, 6: 815-823

    7. [7]

      Chang Y C, Yang K, Wei P, Huang S, Pei Y, Zhao W, Pei Z C. Angew Chem Int Ed, 2014, 53: 13126-13130

    8. [8]

      Fan J X, Zheng D W, Rong L, Zhu J Y, Hong S, Li C, Xu Z S, Cheng S X, Zhang X Z. Biomaterials, 2017, 139: 116-126

    9. [9]

      Jiang Q, Nie Y, Chen X B, He Y Y, Yue D, Gu Z W. Adv Funct Mater, 2017, 27(26): 1701571

    10. [10]

      Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv Mater, 2012, 24: 5476-5480

    11. [11]

      Sun C Y, Shen S, Xu C F, Li H J, Liu Y, Cao Z T, Yang X Z, Xia J X, Wang J. J Am Chem Soc, 2015, 137: 15217-15224

    12. [12]

      Ma S N, Zhou J, Zhang Y X, He Y Y, Jiang Q, Yue D, Xu X H, Gu Z W. ACS Appl Mater Interfaces, 2016, 8: 28468-28479

    13. [13]

      Wang H X, Yang X Z, Sun C Y, Mao C Q, Zhu Y H, Wang J. Biomaterials, 2014, 35: 7622-7634

    14. [14]

      Meng H, Liong M, Xia T, Li Z, Ji Z, Zink J I, Nel A E. ACS Nano, 2010, 4: 4539-4550

    15. [15]

      Han M, Lv Q, Tang X J, Hu Y L, Xu D H, Li F Z, Liang W Q, Gao J Q. J Control Release, 2012, 163: 136-144

    16. [16]

    17. [17]

      Rajendran L, Knölker H J, Simons K. Nat Rev Drug Discov, 2010, 9: 29-42

    18. [18]

      Guo X, Wei X, Jing Y T, Zhou S B. Adv Mater, 2015, 27: 6450-6456

    19. [19]

      Futaki S. Adv Drug Deliver Rev, 2005, 57: 547-558

    20. [20]

      Chen S, Lei Q, Qin W X, Liu L H, Zheng D W, Fan J X, Rong L, Sun Y X, Zhang X Z. Biomaterials, 2017, 117: 92-104

    21. [21]

      Han S S, Li Z Y, Zhu J Y, Han K, Zeng Z Y, Hong W, Li W X, Jia H Z, Liu Y, Zhuo R X, Zhang X Z. Small, 2015, 11: 2543-2554

    22. [22]

      Chen S, Fan J X, Qiu W X, Liu L H, Cheng H, Liu F, Yan G P, Zhang X Z. Macromol Rapid Commun, 2017, 38: 1700490 DOI: 10.1002/marc.201700490  doi: 10.1002/marc.201700490

    23. [23]

      Lin Y X, Qiao S L, Wang Y, Zhang R X, An H W, Ma Y, Rajapaksha R P Y J, Qiao Z Y, Wang L, Wang H. ACS Nano, 2017, 11: 1826-1839

    24. [24]

      Chen S, Lei Q, Li S Y, Qin S Y, Jia H Z, Cheng Y J, Zhang X Z. Biomaterials, 2016, 92: 25-35

    25. [25]

      Hu J J, Hu K, Cheng Y Y. Acta Biomater. 2016, 35, 1-11.

    26. [26]

      Chen S, Fan J X, Qiu W X, Liu F, Yan G P, Zeng X, Zhang X Z. J Mater Chem B, 2018, 6: 1543-1551

    27. [27]

      Liu C Q, Zhang Y, Liu M, Chen Z W, Lin Y H, Li W, Cao F F, Liu Z, Ren J S, Qu X G. Biomaterials, 2017, 139: 151-162

    28. [28]

      Chen S, Rong L, Lei Q, Cao P X, Qin S Y, Zheng D W, Jia H Z, Zhu J Y, Cheng S X, Zhuo R X, Zhang X Z. Biomaterials, 2016, 77: 149-163

  • 加载中
    1. [1]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    2. [2]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    5. [5]

      Tiejin ChenXiaokuang XueJian LiMinhui CuiYongliang HaoMianqi XueHaihua XiaoJiechao GePengfei Wang . Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy. Acta Physico-Chimica Sinica, 2025, 41(10): 100113-0. doi: 10.1016/j.actphy.2025.100113

    6. [6]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    7. [7]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    8. [8]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    9. [9]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    10. [10]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    11. [11]

      Ruifeng CHENChao XUJianting JIANGTianshe YANG . Gold nanorod/zinc oxide/mesoporous silica nanoplatform: A triple-modal platform for synergistic anticancer therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2272-2282. doi: 10.11862/CJIC.20250117

    12. [12]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    13. [13]

      Lin LIJiaxue LIMeixia YANGJiayu DINGJiaqi JINGRuiping ZHANG . Preparation of mitoxantrone self-assembled carrier-free nanodrugs regulated by sodium acetate for apoptosis induction of human breast carcinoma cells. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2536-2548. doi: 10.11862/CJIC.20250138

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    16. [16]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    17. [17]

      Shuo Wu Cheng Yang Xiao Dong Huimin Guo Bo Song Baojun Ding Xiuyun Wang Yuzhen Pan . Precise Teaching Based on Analytical Chemistry Artificial Intelligent Course. University Chemistry, 2025, 40(11): 76-82. doi: 10.12461/PKU.DXHX202502090

    18. [18]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    19. [19]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    20. [20]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

Metrics
  • PDF Downloads(0)
  • Abstract views(251)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return