Citation: Yi Zou, Chen-guang Liu, Ai-hua He. Isothermal Crystallizations of Polybutene-1 and Polybutene-1 Alloy from Their Solutions[J]. Acta Polymerica Sinica, ;2018, 0(6): 765-772. doi: 10.11777/j.issn1000-3304.2017.17322 shu

Isothermal Crystallizations of Polybutene-1 and Polybutene-1 Alloy from Their Solutions

  • It is known that the solubility of PB-1 in n-heptane correlates closly to temperature, so it is thus of vital importance to investigate the solution crystallization of polybutene-1 (PB-1) and polybutene-1 in-reactor alloy (PBA) via the cooling solution crystallization method. In this work, the isothermal solution crystallization behaviors of PB-1 and PB-1 in-reactor alloy (PBA) from n-heptane were investigated. The dissolution temperature and isothermal crystallization temperature were determined from the solubility curves of PB-1 in n-heptane obtained by grametry. The isothermal crystallization kinetics of PB-1 and PBA from solutions were studied by dilatometry. The solution crystallization rate decreased with increasing isothermal temperature without changing the nucleation mode of PB-1. However, the crystallization rate of PB-1 component in PBA was faster than that of pure PB-1. The presence of polypropylene (PP) component in PBA shortened nucleation induction period of PB-1 component, and PB-b-PP copolymer could accelerate crystallization rate of PB-1 component. Additionally, the DSC test confirmed that the crystal form I′ and III of PB-1 were generated during the solution crystallization in both pure PB-1 and PBA, and no crystal form transformation occurred at room temperature. Due to the solvation of n-heptane, the two crystal forms I and II of PB-1 were not observed in this system. From WAXD measurement, it has also been found that the increase in solution crystallization temperature promoted the relative content of the crystal form III with a decrease in the crystallinity of PB-1. This was because that the increase in temperature led to decrease in supersaturation of solution system, which weakened the driving force of the crystallization and decreased the crystallizable component of PB-1. The behavior change of PB-1 component in PBA with temperature was similar to that of pure PB-1. At the same temperature, the presence of PP component in PBA promoted the III/I′ ratio and the crystallinity of PB-1. We further proposed the crystallization models for PB-1 and PBA in solutions.
  • 加载中
    1. [1]

      Luciani L, Seppala J, Lofgren B. Prog Polym Sci, 1988, 13(1): 37-62

    2. [2]

      Galli P, Vecellio G. J Polym Sci, Part A: Polym Chem, 2003, 42(3): 396-415

    3. [3]

      Kopp S, Wittmann J C, Lotz B. J Mater Sci, 1994, 29(23): 6159-6166

    4. [4]

      Alfonso G C, Azzurri F, Castellano M. J Therm Anal Calorim, 2001, 66(1): 197-207

    5. [5]

      Holland V F, Miller R L. J Appl Phys, 1964, 35(11): 3241-3248

    6. [6]

      And B L, Thierry A. Macromolecules, 2014, 36(36): 286-290

    7. [7]

      Qiao Y, Wang Q, Men Y. Macromolecules, 2016, 49(14)

    8. [8]

      Wang Y, Lu Y, Jiang Z, Men Y. Macromolecules, 2014, 47(18): 6401-6407

    9. [9]

      Wang Y, Lu Y, Zhao J, Jiang Z, Men Y. Macromolecules, 2014, 47(24): 8653-8662

    10. [10]

      Azzurri F, Flores A, Alfonso G C. Macromolecules, 2002, 35(24): 128-145

    11. [11]

      Li L, Liu T, Zhao L, Yuan W K. Macromolecules, 2009, 42(42): 2286-2290

    12. [12]

      Shi J, Wu P, Li L, Liu T, Zhao L. Polymer, 2009, 50(23): 5598-5604

    13. [13]

      Xu Y, Liu T, Li L, Zhao L. Polymer, 2012, 53(26): 6102-6111

    14. [14]

      Rosa C D, Ballesteros O R D, Auriemma F, Girolamo R D, Scarica C. Macromolecules, 2014, 47(13): 4317-4329

    15. [15]

      Wanjale S D, Jog J P. J Polym Sci, Part B: Polym Phys, 2003, 41(10): 1014-1021

    16. [16]

      Jog J P. J Macromol Sci B, 2003, 42(6): 1141-1152

    17. [17]

      Kalay G, Kalay C R. J Appl Polym Sci, 2003, 88(3): 806–813

    18. [18]

      Lu K, Yang D. Polym Bull, 2007, 58(4): 731-736

    19. [19]

      Liu Y, Cui K, Tian N, Zhou W, Meng L. Macromolecules, 2012, 45(6): 2764-2772

    20. [20]

      Kitamura M. J Cryst Growth, 2002, 237-239(3): 2205-2214

    21. [21]

      Davey R J, Schroeder S L M, Ter Horst J H. Angew Chem Int Ed, 2013, 52: 2166-2179

    22. [22]

      Frenkel D. Science, 1997, 277(5334): 1975

    23. [23]

    24. [24]

    25. [25]

      Sastry K S, Patel R D. Eur Polym J, 1972, 8(1): 63-74

    26. [26]

      Geil P H. J Macromol Sci B, 2012, 23(1): 115-142

    27. [27]

      Keunhyung Lee, Steven Givens, J F R. Macromolecules, 2007, 40(7): 2590-2595

    28. [28]

      Kaszonyiova M, Rybnikar F, Geil P H. J Macromol Sci B, 2004, 43(5): 1095-1114

    29. [29]

      Yamashita M, Ueno S. Cryst Res Technol, 2007, 42(12): 1222-1227

    30. [30]

      Tosaka M, Takashi Kamijo, Tsuji M, Kohjiya S, Ogawa T, Isoda S, Takashi Kobayashi. Macromolecules, 2000, 33(26): 9666-9672

    31. [31]

      Shao H F, Ma Y P, Nie H R, He A H. Chinese J Polym Sci, 2016, 34(9): 1141-1149

    32. [32]

      He A, Zheng W, Shi Y, Liu G, Yao W, Huang B. Polym Int, 2012, 61(10): 1575-1581

    33. [33]

      He A, Shi Y, Liu G, Yao W, Huang B. Chinese J Polym Sci, 2012, 30(5): 632-641

    34. [34]

      Jiang B, Shao H, Nie H, He A. Polym Chem, 2015, 6(17): 3315-3323

    35. [35]

      Dehring K A, Workman H L, Miller K D, Mandagere A, Poole SK. J Pharmaceut Biomed, 2004, 36(3): 447-56

    36. [36]

      Mantzaris N V. Chem Eng Sci, 2005, 60(17): 4749-4770

    37. [37]

    38. [38]

      Avrami M. J Chem Phys, 1939, 7: 1103-1112

    39. [39]

      Avrami M. J Chem Phys, 1940, 8: 212-224

    40. [40]

      Avrami M. J Chem Phys, 1941, 9: 177-184

    41. [41]

      Allegra G, Corradini P, Elias H G, Geil P H, Keith H D, Wundedich B. IUPAC Commission on Macromolecular Nomenclature, Pure & Appl Chem, 1989, 61(4): 769-785

    42. [42]

      Shieh Y T, Lee M S, Chen S A. Polymer, 2001, 42(9): 4439-4448

    43. [43]

      Jr J B, Youngman E A. J Polym Sci B, 1964, 2(9): 903-907

    44. [44]

    45. [45]

      Yao K C, Nie H R, Liang Y R, Qiu D, He A H. Polymer, 2015, 80: 259-264

  • 加载中
    1. [1]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    2. [2]

      Wenwen Zhang Peichao Zhang Conghao Gai Xiaoyun Chai Yan Zou Qingjie Zhao . Unveiling Kinetics at Natural Abundance: 13C NMR Isotope Effect Experiments. University Chemistry, 2025, 40(10): 203-207. doi: 10.12461/PKU.DXHX202411076

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    7. [7]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    8. [8]

      Hong Zheng Xin Peng Chunwang Yi . The Tale of Caprolactam Cyclic Oligomers: The Ever-changing Life of “Princess Cyclo”. University Chemistry, 2024, 39(9): 40-47. doi: 10.12461/PKU.DXHX202403058

    9. [9]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Shengli Chen Xinxin Zhao Mingxue Xing Xintai Li Xiaojie Zhang Xiuli Hu Jimin Zhang . “一触即发”:聚羧酸减水剂和水泥的魔力碰撞. University Chemistry, 2025, 40(8): 315-322. doi: 10.12461/PKU.DXHX202410036

    12. [12]

      Leyu DINGYing HEZhihe WEIYang PENGZhao DENG . Conductive polypyrrole-confined Co-MOF-74 for high-performance lithium metal anodes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2491-2502. doi: 10.11862/CJIC.20250176

    13. [13]

      Jianan Fang Youhao Gu Zexuan Gui Laiying Zhang Jiawei Yan Ruming Yuan Xiaoming Xu . Experimental Improvement and Expansion of the Electromotive Force Method to Determine the Mean Activity Coefficient of Electrolyte Solution. University Chemistry, 2025, 40(11): 263-271. doi: 10.12461/PKU.DXHX202504055

    14. [14]

      Xuewei Qian Xingwen Sun Houjin Li Zhanxiang Liu Yuan Zheng Lin Wu Shuanglian Cai Ying Xiong Guangao Yu Qingwen Liu Jie Han Xin Du Chengshan Yuan Qihan Zhang Shuyong Zhang Jianrong Zhang . Basic Operations and Specification Suggestions for Organic Chemical Recrystallization Experiments. University Chemistry, 2025, 40(5): 66-75. doi: 10.12461/PKU.DXHX202503126

    15. [15]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    20. [20]

      Ruiying Zhao Shuheng Luo Jinke Li Junjie Zhang Min Zhu Yang Li Yanhong Bai Yinhuan Li Lijuan Wang . Ultrasonic-Assisted Synthesis of Rosacetal: A Comprehensive Research-Oriented Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 300-309. doi: 10.12461/PKU.DXHX202412075

Metrics
  • PDF Downloads(0)
  • Abstract views(223)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return