Citation: Jie-xiang Tong, Jing Luo, Jia-hao Dong, Xiao-ya Liu. Synthesis of Double-responsive Core Cross-linked Star Polymers[J]. Acta Polymerica Sinica, ;2018, 0(6): 674-681. doi: 10.11777/j.issn1000-3304.2017.17262 shu

Synthesis of Double-responsive Core Cross-linked Star Polymers

  • Corresponding author: Jing Luo, jingluo19801007@126.com
  • Received Date: 11 September 2017
    Revised Date: 4 October 2017
    Available Online: 1 March 2018

  • A series of water-soluble double-responsive core cross-linked star polymers (PNSB@PAA-DMP), in which poly(3-acrylamidophenylboronic acid-co-acrylamide) (PAA-DMP) served as the pH-responsive arm and poly(N-isopropyl acrylamide-co-styrene-co-N,N′-methylenebisacrylamide) (PNSB) as the thermoresponsive core, have been successively prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization using the " arm-first” approach. Poly(AAPBA-co-AM) is first prepared via RAFT polymerization to give a well-defined linear hydrophilic macro-RAFT agent, which subsequently copolymerizes with thermosensitive monomer NIPAM (N-isopropyl acrylamide), crosslinker Bis (N,N′-methylenebisacrylamide) and St (styrene) to give the desired pH and thermoresponsive star polymers (PNSB@PAA-DMP). Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy (1H-NMR) are empolyed to characterize the structure and composition of the resultant polymers. The molecular weight of the polymers are obtained by gel permeation chromatography (GPC). The morphology and particle size of polymer under dry conditions are characterized by transmission electron microscopy (TEM). In addition, the phase transition behavior of the polymers in aqueous solutions at low concentration is investigate by dynamic light scattering (DLS) and ultraviolet-visible spectroscopy (UV-Vis). The results show that the obtained PNSB@PAA-DMP polymers exhibit reversible thermal-induced volume phase transition and pH responsibility. The lower critical solution temperature (LCST) of the core cross-linked star polymers in aqueous solutions can be tuned by changing the feeding ratio of the hydrophobic monomer St. In addition, the LCST of the polymer solution could also be affected by changing the pH of the polymer solution. What is most interesting is that sol-gel transition of the polymer solution can be achieved by controlling temperature and pH at a higher concentration. For example, a free flowing solution (20 mg/mL, pH = 9) is observed at 15 °C, but a white hydrogel is formed when this solution is heated to 30 °C. When pH = 12, the polymer solution (20 mg/mL), at any temperature, is always in the sol state, which quickly settles at the vial bottom when the sample vials is inverted.
  • 加载中
    1. [1]

      Banerjee R, Maiti S, Dhara D. Green Chem, 2014, 16: 1365-1373  doi: 10.1039/C3GC41722K

    2. [2]

      Li W W, Yu Y, Lamson M, Silverstein M S, Tilton R D, Matyjaszewski K. Macromolecules, 2012, 45: 9419-9426  doi: 10.1021/ma3016773

    3. [3]

      Cao X T, Zhang C L, Wu S B, An Z S. Polym Chem, 2014, 5(14): 4277-4284  doi: 10.1039/c4py00135d

    4. [4]

      Ren J M, McKenzie T G, Fu Q, Wong E H H, Xu J T, An Z S, Shanmugam S, Davis T P, Boyer C, Qiao G G. Chem Rev, 2016, 116: 6743-6836  doi: 10.1021/acs.chemrev.6b00008

    5. [5]

      Wu W, Wang W G, Li J S. Prog Polym Sci, 2015, 46: 55-85  doi: 10.1016/j.progpolymsci.2015.02.002

    6. [6]

      Rodionov V, Gao H F, Scroggins S, Unruh D A, Avestro A J, Fréchet J M J. J Am Chem Soc, 2010, 132(8): 2570-2572  doi: 10.1021/ja9104842

    7. [7]

      Zhang C L, Miao M, Cao X T, An Z S. Polym Chem, 2012, 3(9): 2656-2664  doi: 10.1039/c2py20442h

    8. [8]

      Qiu Q, Liu G Y, An Z S. Chem Commun, 2011, 47: 12685-126857  doi: 10.1039/c1cc15679a

    9. [9]

    10. [10]

      Zhang M M, Shen W, Xiong Q Q, Wang H W, Zhou Z M, Chen W J, Zhang Q Q. RSC Adv, 2015, 5: 28133-28140  doi: 10.1039/C5RA02115D

    11. [11]

      Dai Y Q, Sun H, Pal S, Zhang Y L, Park S, Kabb C P, Wei W D, Sumerlin B S. Chem Sci, 2017, 8: 1815-1821  doi: 10.1039/C6SC04650A

    12. [12]

      Herfurth C, Laschewsky A, Noirez L, Lospichl B V, Gradzielski M. Polymer, 2016, 107: 422-433  doi: 10.1016/j.polymer.2016.09.089

    13. [13]

      Qu Y Y, Liu J X, Yang K G, Wu Q, Shan Y C, Zhang L H, Liang Z, Zhang Y K. J Mater Chem B, 2015, 3: 3927-3930  doi: 10.1039/C5TB00156K

    14. [14]

      Wang J X, Wang Y N, Gao M X, Zhang X M, Yang P Y. ACS Appl Mater Interfaces, 2015, 7: 16011-16017  doi: 10.1021/acsami.5b04295

    15. [15]

      Wang H Y, Bie Z J, Lü C C, Liu Z. Chem Sci, 2013, 4(11): 4298-4303  doi: 10.1039/c3sc51623g

    16. [16]

      Zhang C J, Losego M D, Braun P V. Chem Mater, 2013, 25: 3239-3250  doi: 10.1021/cm401738p

    17. [17]

      Li S Q, Davis E N, Anderson J, Lin Q, Wang Q. Biomacromolecules, 2008, 10(1): 113-118

    18. [18]

      Rzaev Z M O, Dincer S, Piskin E. Prog Polym Sci, 2007, 32(5): 534-595  doi: 10.1016/j.progpolymsci.2007.01.006

    19. [19]

      Kanazawa H, Okano T. J Chromatogr A, 2011, 1218(49): 8738-8747  doi: 10.1016/j.chroma.2011.04.015

    20. [20]

      Wang D, Liu T,Yin J, and Liu S Y. Macromolecules, 2011, 44, 2282-2290  doi: 10.1021/ma200053a

    21. [21]

      Lin Z, Zheng J N, Xia Z W, Yang H H, Zhang L, Chen G N, RSC Adv, 2012, 2(12): 5062-5065

    22. [22]

    23. [23]

      Matsumoto A, Yoshida R, Kataoka K. Biomacromolecules, 2004, 5(3): 1038-1045  doi: 10.1021/bm0345413

  • 加载中
    1. [1]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    2. [2]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    3. [3]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    4. [4]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    5. [5]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    6. [6]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    7. [7]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    8. [8]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    9. [9]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    10. [10]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    13. [13]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    14. [14]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    15. [15]

      Junyu Peng Feng Wang Hongmei Yuan Xiaoli Sun . Exploration of the “Sheep-Flock Effect” Teaching Model Based on Dual Preview: Taking Instrumental Analysis Experiment Courses in Local Universities as an Example. University Chemistry, 2025, 40(9): 310-317. doi: 10.12461/PKU.DXHX202412098

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    19. [19]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    20. [20]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

Metrics
  • PDF Downloads(0)
  • Abstract views(217)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return