Citation: Ke Zhang, Tai-sheng Wang, Zi-li Li, Jing-wen Dai, Wei-dong He, Ru-ke Bai. Preparation of Hollow Nanospheres by Miniemulsion Polymerization[J]. Acta Polymerica Sinica, ;2018, (4): 475-481. doi: 10.11777/j.issn1000-3304.2017.17231 shu

Preparation of Hollow Nanospheres by Miniemulsion Polymerization

  • An amphiphilic iniferter, 2-(N, N-dicarboxymethyl dithiocarbamate) dodecyl isobutyrate (DIBDC), was synthesized and characterized by 1H-NMR spectroscopy. Dodecyl 2-bromo-2-methylpropionate was prepared from lauryl alcohol and 2-bromo-2-methylpropionyl bromide in the presence of triethylamine in ice water bath. Sodium N, N-dicarboxymethyl dithiocarbamate was synthesized from iminodiacetic acid, carbon disulfide and sodium hydroxide at room temperature. DIBDC was synthesized by the reaction between dodecyl 2-bromo-2-methylpropionate and sodium N, N-dicarboxymethyl dithiocarbamate at 60℃. Since DIBDC is not only a surfactant, but also used as an initiator, miniemulsion polymerization of styrene was performed in the presence of DIBDC using Cu(OAc)2 as the catalyst. The miniemulsion systemconsisted of distilled water, surfactant, hexadecane and styrene. Stable miniemulsion was obtained after stirring and ultrasonic treatment. After adding copper acetate and heating up to 80℃, the polymerization began.To characterize the hollow spheres, dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used. The results indicated that hollow polystyrene nanospheres with diameters of 100 nm to 200 nm were successfully prepared by the living radical miniemulsion polymerization. The PDI of diameter was below 0.1, showing good monodispersity of the nanospheres. It is well known that dithiocarbamates act as pseudohalogens, therefore, DIBDC can be used to perform a living radical polymerization, which is similar to atom transfer radical polymerization under catalysis of Cu(OAc)2. Due to the amphiphilicity of DIBDC and the reversible equilibrium between the active and the dormant species, thepolymerization was realized in aconfinedspace of the oil-water interface. As a result, hollow nanospheres were formed. And moreover, the formation of solid polymer nanoparticles was avoided. However, when azobisisobutyronitrile (AIBN) was used as the initiator instead of Cu(OAc)2 as a catalyst, solid polystyrene nanospheres were obtained. The reason is that the polymerization is no longer carried out in the confined space, which is similar to suspension polymerization because AIBN is dissolved in the micelles.
  • 加载中
    1. [1]

      Cui J W, Wang Y J, Postma A, Hao J C, Hosta-Rigau L, Caruso F. Adv Funct Mater, 2010, 20(10):1625-1631  doi: 10.1002/adfm.v20:10

    2. [2]

      Liu S Y, WeaverJ V M, Save M, Armes S P. Langmuir, 2002, 18(22):1347-1353
       

    3. [3]

      Torchilin V P, Frank-Kamenetsky M D, Wolf G L. Acad Radiol, 1999, 6(1):61-65  doi: 10.1016/S1076-6332(99)80063-4

    4. [4]

      Xiao L F, Cao Y L, Xiao J, Schwenzer B, Engelhard M H, Saraf L V, Nie Z M, ExarhosG J, Liu J. Adv Mater, 2012, 24(9):1176-1181  doi: 10.1002/adma.v24.9

    5. [5]

      Zha L S, Zhang Y, Yang W L, Fu S K. Adv Mater, 2002, 14(15):1090-1092  doi: 10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6

    6. [6]

      Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Bioconjug Chem, 2005, 16(1):131-138  doi: 10.1021/bc034049g

    7. [7]

      Wu H, Zhu L, Torchilin V P. Biomaterials, 2013, 34(4):1213-1222  doi: 10.1016/j.biomaterials.2012.08.072

    8. [8]

      Fernández-Argüelles M T, Yakovlev A, Sperling R A, Luccardini C, Gaillard S, Medel A S, Mallet J M, Brochon J C, Feltz A, Oheim M, Parak W J.Nano Lett, 2007, 7(9):2613-2617  doi: 10.1021/nl070971d

    9. [9]

      Wang Wei, Jin Zhaohui, Li Tielong. China Environmental Science, 2009, 29(8):811-815
       

    10. [10]

      Guo M, Mao H, Li Y, Zhu A, He H, Yang H, Wang Y, Tian X, Ge C, Peng Q, Wang X, Yang X, Chen X, Liu G, Chen H. Biomaterials, 2014, 35(16):4656-4666  doi: 10.1016/j.biomaterials.2014.02.018

    11. [11]

      Li Nan, Wang Xiaogong. Acta Polymerica Sinica, 2013, (4):549-555
       

    12. [12]

      Blomberg S, Ostberg S, Harth E, Bosman A W, vanHorn B, HawkerC J. J Polym Sci, Part A:Polym Chem, 2002, 40(9):1309-1320  doi: 10.1002/(ISSN)1099-0518

    13. [13]

      Morinaga T, Ohkura M, Ohno K, Tsujii Y, Fukuda T. Macromolecules, 2007, 40(4):1159-1164  doi: 10.1021/ma062230p

    14. [14]

      Huang X, Appelhans D, Formanek P, Simon F, Voit B. Macromolecules, 2011, 44(21):8351-8360  doi: 10.1021/ma201982f

    15. [15]

      Ali S I, Heuts J P, van Herk A M. Langmuir, 2010, 26(11):7848-7858  doi: 10.1021/la904709c

    16. [16]

      Ali S I, Heuts J P, van Herk A M. Soft Matter, 2011, 7(11):5382-5390  doi: 10.1039/c1sm05266g

    17. [17]

      Städler B, Chandrawati R, Goldie K, Caruso F. Langmuir, 2009, 25(12):6725-6732  doi: 10.1021/la900213a

    18. [18]

      Huang B, Bai F, Yang X L, HuangW Q. Chinese J Polym Sci, 2010, 28(2):277-285  doi: 10.1007/s10118-010-9089-7

    19. [19]

      Liu W, Yang X L, He X G. Chinese J Polym Sci, 2009, 27(2):275-284  doi: 10.1142/S025676790900390X

    20. [20]

      Jiang Y M, Li B T, Deng W, LiX Y, KanC Y. Chinese J Polym Sci, 2014, 32(1):21-28  doi: 10.1007/s10118-014-1391-3

    21. [21]

      Jiang Y M, Li B T, Wang W J, Xu M, Kan C Y. Chinese J Polym Sci, 2014, 32(2):177-186  doi: 10.1007/s10118-014-1387-z

    22. [22]

      Fang Yingjun, Deng Wei, Zuo Han, Kan Chengyou. Acta Polymerica Sinica, 2015, (8):927-932
       

    23. [23]

      Ni K F, Shan G R, Weng Z X. Macromolecules, 2006, 39(7):2529-2535  doi: 10.1021/ma052061t

    24. [24]

      Jang J, Lee K. Chem Commun, 2002, 10(10):1098-1099
       

    25. [25]

      Tiarks F, Landfester K, Antonietti M. Langmuir, 2001, 17(3):908-918  doi: 10.1021/la001276n

    26. [26]

      Lu F, Luo Y, Li B. Macromol Rapid Commun, 2010, 28(28):868-874
       

    27. [27]

      Fuchs A V, Thurecht K J. Macromol Chem Phys, 2015, 216(12):1271-1281  doi: 10.1002/macp.201500061

    28. [28]

      Ye C, Luo Y, Liu X. Polymer, 2011, 52(3):683-693  doi: 10.1016/j.polymer.2010.12.030

    29. [29]

      Otsu T, Yoshida M. Makromo Chem, Rapid Commun, 2003, 3(2):127-132
       

    30. [30]

      Chen X P, Qiu K Y. Chem Commun, 2000, 3(3):233-234
       

    31. [31]

      Li P, Qiu K Y. J Polym Sci, Part A:Polym Chem, 2002, 40(12):2093-2097  doi: 10.1002/(ISSN)1099-0518

    32. [32]

      Li P, Qin S H, Qin D Q, Qiu K Y. Polym Int, 2004, 53(6):756-765  doi: 10.1002/(ISSN)1097-0126

    33. [33]

      Zhang W, Zhou N, Zhu J, Sun B, Zhu X. J Polym Sci, Part A:Polym Chem, 2006, 44(1):510-518  doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Zhang W, Zhu X, Zhu J, Chen J. J Polym Sci, Part A:Polym Chem, 2006, 44(1):32-41  doi: 10.1002/(ISSN)1099-0518

    35. [35]

      Nicolaÿ R, Kwak Y, Matyjaszewski K. Macromolecules, 2008, 41(13):4585-4596  doi: 10.1021/ma800539v

    36. [36]

      Blomberg S, Ostberg S, Harth E, Bosman A W, van Horn B, Hawker C J, Zhang Y Z, Schröder K, Kwak Y, Krys P, Morin A N, Pintauer T, Poli R, Matyjaszewski K. Macromolecules, 2013, 46(46):5512-5519
       

    37. [37]

      Jiang H J, Zhang L F, Jiang X W, Bao X G, Cheng Z P, Zhu X L. Macromol Rapid Commun, 2014, 35(15):1332-1339  doi: 10.1002/marc.v35.15

    38. [38]

      Jiang H J, Tian C, Zhang L F, Cheng Z P, Zhu X L. RSC Adv, 2014, 4(94):52430-52437  doi: 10.1039/C4RA09439E

    39. [39]

      Jing X, Liu F, Yang X, Ling P, Li L, Long C, Li A. J Hazard Mater, 2009, 167(1-3):589-596  doi: 10.1016/j.jhazmat.2009.01.020

    40. [40]

      Otsu T, Yoshida M. Macromol Rapid Commun, 1982, 3(2):127-132  doi: 10.1002/marc.1982.030030208

    41. [41]

      Otsu T, Matsumoto A. Adv Polym Sci, 1998, 136:74-137
       

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    4. [4]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    5. [5]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    6. [6]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    8. [8]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    9. [9]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    12. [12]

      Chunyuan KangXiaoyu LiFan YangBai Yang . Ionic-bond crosslinked carbonized polymer dots for tunable and enhanced room temperature phosphorescence. Acta Physico-Chimica Sinica, 2026, 42(1): 100156-0. doi: 10.1016/j.actphy.2025.100156

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    15. [15]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    16. [16]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    17. [17]

      Gengjia Chen Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    20. [20]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return