Citation: Kang Ma, Yu-lu Ma, Hai-li Zhao, Song Liu, Lin-sheng Xie, Jin Sha. Fabrication of Hyperbranched PEG Brushes viaLaser-mediated Self-condensing Surface-initiated Atom Transfer Radical Polymerization[J]. Acta Polymerica Sinica, ;2018, 0(5): 571-580. doi: 10.11777/j.issn1000-3304.2017.17178 shu

Fabrication of Hyperbranched PEG Brushes viaLaser-mediated Self-condensing Surface-initiated Atom Transfer Radical Polymerization

  • Corresponding author: Jin Sha, sjin@ecust.edu.cn
  • Received Date: 7 July 2017
    Revised Date: 30 July 2017
    Available Online: 1 March 2018

  • Surface polymer brushes have been extensively studied to modify the surface properties of substrates and to implement multifunctionality. Compared to comb type brushes, hyperbranched-structure polymer brushes show significant advantages in thermal stability, compatibility and functionalization potential. The preparation study of surface hyperbranched polymer brushes is fundamental to explode polymer brushes applications. Here, laser-mediated surface-initiated atom transfer radical polymerization (SI-ATRP) is firstly introduced to conduct self-condensing polymerization, with 2-bromoisobutyrate ester of oligo (ethylene glycol) methacrylate (OEGMA-Br) as AB*-type inimer and Ir(ppy)3 as the photo-redox catalyst, to prepare hyperbranched poly(ethylene glycol)(PEG) brushes on a silicon substrate. Based on the discussion on the mechanism of OEGMA-Br inimer self-condensing polymerization on solid-liquid interface and at surface solution on silicon surface, five microstructures are proposed for the constitution of the hyperbranched PEG brushes and the corresponding signals are further confirmed by 1H-NMR spectra analysis. X-ray photoelectron spectroscopy (XPS) characterization is conducted to investigate the chemical composition of hyperbranched PEG brushes. The high resolution C1s and Br3d spectra indicate the preservation of surface bromine density on hyperbranched PEG brushes in comparison to initiator surface on silicon substrate, implying the hyperbranched microstructure and high active site densities. Then, the thickness of hyperbranched PEG brushes corresponding to different inimer concentrations is investigated by ellipsometry, which indicates an increase first in the thickness and a subsequant decrease trend as the inimer concentration increased. A competitive mechanism for the surface polymerization is proposed to depict the growth of the hyperbranched PEG brushes on a silicon substrate, which refers to a competition between the solid-liquid interface polymerization and the surface solution polymerization. An increase of inimer concentration would promote the self-condensing polymerization of the inimer in solution, which consequently inhibits the solid-liquid interface polymerization and is unfavorable to the hyperbranched PEG brushes growth. Furthermore, laser confocal microscopy observation of the absorption of 5-isothiocyanatofluorescein (FITC) labeled bovine serum albumin (BSA) on hyperbranched PEG brushes micropatterns proves the significant anti-fouling property. The research extends the application of photo-catalyzed SI-ATRP in the preparation of surface hyperbranched-structure polymer brushes, and provides fundamental technical support to expand the applications of the hyperbranched PEG brushes in drug transport, biosensing and high-throughput cell screening.
  • 加载中
    1. [1]

      Nie Z, Kumacheva E. Nat Mater, 2008, 7: 277-290  doi: 10.1038/nmat2109

    2. [2]

      Olivier A, Meyer F, Raquez J M, Damman P, Dubois P. Prog Polym Sci, 2012, 37: 157-181  doi: 10.1016/j.progpolymsci.2011.06.002

    3. [3]

      Ishihara K, Kitagawa T, Inoue Y. ACS Biomater Sci Eng, 2015, 1: 103-109  doi: 10.1021/ab500048w

    4. [4]

      Ramakrishna S N, Cirelli M, Divandari M, Benetti E M. Langmuir, 2017, 33: 4164-4171  doi: 10.1021/acs.langmuir.7b00217

    5. [5]

      Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A, ur Rehman H, Parekh S H, Domke K F. Polym Chem, 2015, 6: 5782-5789  doi: 10.1039/C5PY00514K

    6. [6]

      Zhou G Y, Lee A W, Chang J Y, Huang C H, Chen J K. J Mater Chem C, 2014, 2: 8226-8234  doi: 10.1039/C4TC01380H

    7. [7]

    8. [8]

      Shen Y, Qi L, Wei X, Zhang R, Mao L. Polymer, 2011, 52: 3725-3731  doi: 10.1016/j.polymer.2011.06.041

    9. [9]

      Li Z, Wei J, Shan F, Yang J, Wang X. J Polym Sci, Part B: Polym Phys, 2008, 46: 751-758  doi: 10.1002/(ISSN)1099-0488

    10. [10]

      Ma H, Hyun J, Stiller P, Chilkoti A. Adv Mater, 2004, 16: 338-341  doi: 10.1002/(ISSN)1521-4095

    11. [11]

      Kieviet B D, Schön P M, Vancso G J. Lab Chip, 2014, 14: 4159-4170  doi: 10.1039/C4LC00784K

    12. [12]

      Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem Mater, 2013, 26: 745-762

    13. [13]

    14. [14]

      Patil R R, Turgman Cohen S, Šrogl J í, Kiserow D, Genzer J. Langmuir, 2015, 31: 2372-2381  doi: 10.1021/la5044766

    15. [15]

      Lilge I, Schönherr H. Angew Chem, 2016, 128: 13308-13311  doi: 10.1002/ange.201607078

    16. [16]

      Wang X, Chen X, Xing L, Mao C, Yu H, Shen J. J Mater Chem B, 2013, 1: 5036-5044  doi: 10.1039/c3tb20855a

    17. [17]

      Han S W, Lee S, Hong J, Jang E, Lee T, Koh W G. Biosens Bioelectron, 2013, 45: 129-135  doi: 10.1016/j.bios.2013.01.062

    18. [18]

      Wang D, Jin Y, Zhu X, Yan D. Prog Polym Sci, 2017, 64: 114-153  doi: 10.1016/j.progpolymsci.2016.09.005

    19. [19]

      Lebedeva I O, Zhulina E B, Leermakers F A, Borisov O V. Langmuir, 2017, 33: 1315-1325  doi: 10.1021/acs.langmuir.6b04285

    20. [20]

      Haag R, Stumbé J F, Sunder A, Frey H, Hebel A. Macromolecules, 2000, 33: 8158-8166  doi: 10.1021/ma000831p

    21. [21]

      Siegers C, Biesalski M, Haag R. Chem Eur J, 2004, 10: 2831-2838  doi: 10.1002/(ISSN)1521-3765

    22. [22]

      Totani M, Ando T, Terada K, Terashima T, Kim I Y, Ohtsuki C, Xi C, Kuroda K, Tanihara M. Biomater Sci, 2014, 2: 1172-1185  doi: 10.1039/C4BM00034J

    23. [23]

      Wang Z L, Xu J T, Du B Y, Fan Z Q. J Colloid Interface Sci, 2012, 384: 29-37  doi: 10.1016/j.jcis.2012.06.067

    24. [24]

    25. [25]

      Ignatova M, Voccia S, Gabriel S, Gilbert B, Cossement D, Jérôme R, Jérôme C. Langmuir, 2008, 25: 891-902

    26. [26]

      Zheng Y, Li S, Weng Z, Gao C. Chem Soc Rev, 2015, 44: 4091-4130  doi: 10.1039/C4CS00528G

    27. [27]

      Pranantyo D, Xu L Q, Neoh K G, Kang E T, Teo S L M. Ind Eng Chem Res, 2016, 55: 1890-1901  doi: 10.1021/acs.iecr.5b03735

    28. [28]

      Khan M, Huck W T. Macromolecules, 2003, 36: 5088-5093  doi: 10.1021/ma0340762

    29. [29]

      Murota M, Sato S, Tsubokawa N. Polym Adv Technol, 2002, 13: 144-150  doi: 10.1002/(ISSN)1099-1581

    30. [30]

      Moore E, Delalat B, Vasani R, McPhee G, Thissen H, Voelcker N H. ACS Appl Mater Interfaces, 2014, 6: 15243-15252  doi: 10.1021/am503570v

    31. [31]

      Muthukrishnan S, Erhard D P, Mori H, Müller A H. Macromolecules, 2006, 39: 2743-2750  doi: 10.1021/ma052575s

    32. [32]

      Schüll C, Frey H. Polymer, 2013, 54: 5443-5455  doi: 10.1016/j.polymer.2013.07.065

    33. [33]

      Rodda A E, Ercole F, Nisbet D R, Forsythe J S, Meagher L. Macromol Biosci, 2015, 15: 799-811  doi: 10.1002/mabi.v15.6

    34. [34]

      Ouchi M, Terashima T, Sawamoto M. Chem Rev, 2009, 109: 4963-5050  doi: 10.1021/cr900234b

    35. [35]

      Feng Q, Tang D, Lv H, Zhang W, Li W. RSC Adv, 2015, 5: 62024-62032  doi: 10.1039/C5RA07301D

    36. [36]

      Lee B S, Kim J Y, Park J H, Cho W K, Choi I S. J Nanosci Nanotechnol, 2016, 16: 3106-3109  doi: 10.1166/jnn.2016.11098

    37. [37]

      Mori H, Böker A, Krausch G, Müller A H. Macromolecules, 2001, 34: 6871-6882  doi: 10.1021/ma0019048

    38. [38]

      Treat N J, Fors B P, Kramer J W, Christianson M, Chiu C Y, Read de Alaniz J, Hawker C J. ACS Macro Lett, 2014, 3: 580-584  doi: 10.1021/mz500242a

    39. [39]

      Dadashi Silab S, Atilla Tasdelen M, Yagci Y. J Polym Sci, Part A: Polym Chem, 2014, 52: 2878-2888  doi: 10.1002/pola.27327

    40. [40]

      Yang Q, Lalevée J, Poly J. Macromolecules, 2016, 49: 7653-7666  doi: 10.1021/acs.macromol.6b01808

    41. [41]

      Fors B P, Hawker C J. Angew Chem Int Ed, 2012, 51: 8850-8853  doi: 10.1002/anie.v51.35

    42. [42]

      Wischerhoff E, Uhlig K, Lankenau A, Börner H G, Laschewsky A, Duschl C, Lutz J F. Angew Chem Int Ed, 2008, 47: 5666-5668  doi: 10.1002/anie.v47:30

    43. [43]

      Liu S, Weaver J V, Save M, Armes S P. Langmuir, 2002, 18: 8350-8357  doi: 10.1021/la020496t

    44. [44]

      Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Siclovan T M, Kickelbick G, Vallant T, Hoffmann H. Macromolecules, 1999, 32: 8716-8724  doi: 10.1021/ma991146p

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    7. [7]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    10. [10]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    11. [11]

      Shiyi ChenJialong FuJianping QiuGuoju ChangShiyou Hao . Waste medical mask-derived carbon quantum dots enhance the photocatalytic degradation of polyethylene terephthalate (PET) over BiOBr/g-C3N4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(1): 100135-0. doi: 10.1016/j.actphy.2025.100135

    12. [12]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    15. [15]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . Core cyanation of benzo[a]phenazine acceptor enables 19.04% binary organic solar cells with green solvent compatibility. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

Metrics
  • PDF Downloads(0)
  • Abstract views(249)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return