Citation: Yan-bo Zhu, Miao Du, Chao-hua Lu, Jun Yin, Qiang Zheng. Influence of 3D Printing Parameters on the Interlayer Bonding Strength for TPU Soft Materials[J]. Acta Polymerica Sinica, ;2018, (4): 532-540. doi: 10.11777/j.issn1000-3304.2017.17146 shu

Influence of 3D Printing Parameters on the Interlayer Bonding Strength for TPU Soft Materials

  • By using the improved 3D printer based on the fused deposition method (FDM), thermoplastic polyurethane (TPU) elastomer soft materials were printed into stereoscopic objects. The conventional 3D printer in a FDM mode was improved for soft materials TPU. That is, the distance between the pulling wheels and heated nozzle was shortened and a polytetrafluoroethylene pipe was added to avoid the bending of the soft linear feedstock during 3D printing process. Influence of 3D printing parameter on the appearance and interlayer bonding strength of the printed products were explored. TPU with appropriate content of hard and soft segments could be used for 3D printing. In terms of printing parameter, the layer space has great influence on the appearance of the printed product. When the layer space is set too large, the bonding area will be smaller and the product prone to deform at the corner. If the layer space is set too small, the printing soft line will squeeze each other and cause the printed product deformation and the hollow structure is hard to put up. A novel model for tensile test was designed to characterize the interlayer bonding strength of the printed products. The models, which are divided into two parts during 3D printing process, are bonded to each other layer by layer. The interlayer bonding strength of the 3D printed products with TPU soft materials can catch 70% of that of the samples prepared by mould pressing, and only 48% for that of stiff printing materials. Both the layer space and platform temperature have significant impact on the interlayer bonding strength of the printed product. High platform temperature and low layer space could strengthen the interlayer bonding. The printing speed and printing temperature have little influence on the interlayer bonding strength. The outer contour error of the geometrical shape printed by TPU soft materials is within 1.65% only. Furthermore, the objects printed using TPU soft materials have great resilience and are also easy to bend.
  • 加载中
    1. [1]

      Yang Xiaoling, Zhou Tianrui. J Zhejiang Inst Sci Technol, 2009, 21(3):186-189
       

    2. [2]

      Wang Yanqing, Shen Jingxing, Wu Haiquan. J Aeronaut Mater, 2016, 36(4):89-98
       

    3. [3]

      Mazzoleni G, Di Lorenzo D, Steimberg N. Genes & Nutrition, 2009, 4(1):13-22
       

    4. [4]

      Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann C M, Unterhinninghofen R, Kauczor H U, Giesel F L. Int J Comput Ass Rad, 2010, 5(4):335-341
       

    5. [5]

      Carter Y, Allard T T, Moore N C, Goertzen A L, Klonisch T, Hoppa R D. FASEB J, 2009, 23(1):479-481

    6. [6]

      Lu Bingheng, Li Dichen. Mech Manuf Automat, 2013, 42(4):1-4
       

    7. [7]

      He Chaoliang, Tang zhaohui, Tian Huayu, Chen Xuesi. Acta Polymerica Sinica, 2013, (6):722-732
       

    8. [8]

      Williams J D, Deckard C R. Rapid Prototyping J, 1998, 4(2):90-100  doi: 10.1108/13552549810210257

    9. [9]

      Vaezi M, Seitz H, Yang S. Int J Adv Manuf Tech, 2013, 67:1721-1754  doi: 10.1007/s00170-012-4605-2

    10. [10]

      Melgoza E L, Vallicrosa G, Serenó L, Ciurana J, Rodríguez C A. Rapid Prototyping J, 2014, 20(1):2-12  doi: 10.1108/RPJ-01-2012-0003

    11. [11]

      Zein I, Hutmacher D W, Tan K C, Teoh S H. Biomaterials, 2002, 23(4):1169-1185  doi: 10.1016/S0142-9612(01)00232-0

    12. [12]

      Marchioli G, Van Gurp L, Van Krieken P P, Stamatialis D, Engelse M, van Blitterswijk C A, Karperien M B J, Koning E, Alblas J, Moroni L, van Apeldoorn A A. Biofabrication, 2015, 7(2):025009  doi: 10.1088/1758-5090/7/2/025009

    13. [13]

      Duan B, Wang M, Zhou W Y, Cheung W L, Li Z Y, Lu W W. Acta Biomaterialia, 2010, 6(12):4495-4505  doi: 10.1016/j.actbio.2010.06.024

    14. [14]

      Das A, Madras G, Dasgupta N, Umarji A M. J Eur Ceram Soc, 2003, 23(7):1013-1017  doi: 10.1016/S0955-2219(02)00266-2

    15. [15]

      Korpela J, Kokkari A, Korhonen H, Malin M, Närhi T, Seppälä J. J Biomed Mater Res B, 2013, 101(4):610-619
       

    16. [16]

      Rocha C R, Perez A R T, Roberson D A, Shemelya C M, MacDonald E, Wicker R B. J Mater Res, 2014, 29:1859-1866  doi: 10.1557/jmr.2014.158

    17. [17]

      Du Juan, Wang Hui, Liu Weiqiao. Rubber Reference, 2012, 42(2):27-29
       

    18. [18]

      Yu W, Du M, Zhang D, Lin Y, Zheng Q. Macromolecules, 2013, 46:7341-7351  doi: 10.1021/ma401260d

    19. [19]

      An Mengxue. Polyurethane Elastomer Handbook. Beijing:Chemical Industry Press, 2001. 136-144

    20. [20]

      Carneiro O S, Silva A F, Gomes R. Mater Design, 2015, 83:768-776  doi: 10.1016/j.matdes.2015.06.053

    21. [21]

      He Manjun, Chen Wiexiao, Dong Xixia, Zhang Hongdong. Polymer Physics. Shanghai:Fudan University Press, 2007. 242-244

    22. [22]

      Song Yihu, Du Miao, Yang Hongmei, Zheng Qiang. Acta Polymerica Sinica, 2013, (9):1115-1130
       

    23. [23]

      Zhou J G, Herscovici D, Chen C C. Int J Mach Tool Manu, 2000, 40(3):363-379  doi: 10.1016/S0890-6955(99)00068-1

  • 加载中
    1. [1]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    2. [2]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    3. [3]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    4. [4]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    5. [5]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    6. [6]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    7. [7]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    8. [8]

      Jingwen WangPeizhang ZhaoMengmeng LiJun LiYunfeng Lin . Remedying infectious bone defects via 3D printing technology. Chinese Chemical Letters, 2025, 36(9): 110686-. doi: 10.1016/j.cclet.2024.110686

    9. [9]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    10. [10]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    11. [11]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    12. [12]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    16. [16]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    17. [17]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    18. [18]

      Huanyan LiuJiajun LongHua YuShichao ZhangWenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712

    19. [19]

      Qiuting ZhangFan WuJin LiuHang SuYanhui ZhongZian Lin . Facile synthesis of single-crystal 3D covalent organic frameworks as stationary phases for high-performance liquid chromatographic separation. Chinese Chemical Letters, 2025, 36(8): 110649-. doi: 10.1016/j.cclet.2024.110649

    20. [20]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

Metrics
  • PDF Downloads(0)
  • Abstract views(261)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return