Citation: Wei-wei Li, Hong-liang Kang, Jian Xu, Rui-gang Liu. Microstructures of High-strength High-modulus Carbon Fibers and High-modulus Carbon Fibers[J]. Acta Polymerica Sinica, ;2018, (3): 380-388. doi: 10.11777/j.issn1000-3304.2017.17102 shu

Microstructures of High-strength High-modulus Carbon Fibers and High-modulus Carbon Fibers

  • Corresponding author: Rui-gang Liu, rgliu@iccas.ac.cn
  • Received Date: 24 April 2017
    Revised Date: 19 May 2017

  • The differences between the microstructure and composition of high-strength high-modulus carbon fibers and those of high-modulus carbon fibers, both domestic products, are presented by laser micro-Raman scattering (Raman), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), elemental analysis (EA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). The results show that the graphite crystallites in high-strength high-modulus carbon fibers are fine (La = 0.543 nm, Lc = 0.301 nm). There are many defects in the plane and at the edge of the graphite sheets. On one hand, the small graphite crystallites are linked to each other by sp3 amorphous carbons, which are shown as the wave-like and winkled ribbons in TEM images. The defects in the micro-crystallites, mainly composed of non-conjugated carbon atoms and oxygenated/nitrous carbon, cause a relative larger space between graphite layers (d002 = 0.343 nm) with a lower degree of graphitization (R = 1.15). The fine crystallites and defect structures have a larger orientation angle (Z = 10.33°) of (002) crystal face of the graphite crystallites in the high-strength high-modulus carbon fibers. In addition, the microvoids in the high-strength high-modulus carbon fibers are smaller in size (L = 74.7 nm) and larger in orientation angle (Beq = 9.97º) than those in high-modulus carbon fibers, which attributes to the mergence and development of the microvoids at the interface of graphite crystallites resulted from exhausting of the non-carbon elements during the heat treatment. The high-modulus carbon fibers have a higher degree of graphitization (R = 0.29), and the graphite crystallites are bulky and stacked orderly (La = 0.687 nm, Lc = 0.484 nm, d002 = 0.337 nm, Z = 9.77º). Moreover, the cracks and microvoids in high-modulus carbon fibers are larger in sizes (L = 102.4 nm) and smaller in orientation angle (Beq = 8.11º) than those in the high-strength high-modulus carbon fibers. The hierarchical structure in the high-strength high-modulus carbon fibers, including the microcrystalline structure, the microvoids and the nitrogen/oxygen doped graphite sheets, offers various paths to dispersing the stress during the stretching process of the carbon fibers, which leads to large elongation and high tensile strength for the carbon fibers.
  • 加载中
    1. [1]

      Wang Haojing, Wang Hongfei, Li Dongfeng, Zhu Xingming, He Fu, Wang Xinkui. New Carbon Materials, 2005, 20(2):157-164
       

    2. [2]

      Zhu C Z, Liu X F, Yu X L, Zhao N, Liu J H, Xu J. Carbon, 2012, 50(1):235-243  doi: 10.1016/j.carbon.2011.08.040

    3. [3]

      Feng Zhihai, Li Tongqi, Yang Yunhua, Yang Xiaoguang, Li Xiutao, Xu Lianghua, Lv Chunxiang. Materials China, 2012, 31(8):7-15
       

    4. [4]

      Qian Xin, Zhang Yonggang, Wang Xuefei. Hi-Tech Fiber and Application, 2016, 41(2):25-29

    5. [5]

      Liu Fujie, Wang Haojing, Fan Lidong, Zhu Zhenping. New Chemical Materials, 2009, 37(1):41-43

    6. [6]

      Sun Yinjie, Hu Shengbo, Li Xiutao. Aerospace Materials & Technology, 2010, 2:97-101  doi: 10.3969/j.issn.1007-2330.2010.02.027

    7. [7]

      Zhang Xin, Ma Lei, Li Changqing, Tong Yuanjian, Xu Lianghua. Journal of Beijing University of Chemical Technology, 2008, 35(5):57-60
       

    8. [8]

      Zheng Ninglai. China Synthetic Fiber Industry, 2016, 39:8

    9. [9]

      Huang Yanling. China Industry Review, 2016, 12:74-79
       

    10. [10]

      Qian Xin, Zhang Yonggang, Wang Xuefei. Hi-Tech Fiber and Application, 2016, 41(2):24-27
       

    11. [11]

      Zhang Yonggang, Qian Xin, Wang Xuefei. Hi-Tech Fiber and Application, 2016, 41(2):28-31
       

    12. [12]

      Li W W, Kang H L, Xu J, Liu R G. Chinese J Polym Sci, 2017, 35(6):1-9

    13. [13]

      Chieu T C, Dresselhaus M S, Endo M. Phys Rev B, 1982, 26(10):5867-5877  doi: 10.1103/PhysRevB.26.5867

    14. [14]

      Montes-Moran M A, Young R J. Carbon, 2002, 40(6):845-855  doi: 10.1016/S0008-6223(01)00212-3

    15. [15]

      Montes-Moran M A, Young R J. Carbon, 2002, 40(6):857-875  doi: 10.1016/S0008-6223(01)00207-X

    16. [16]

      Thunemann A F, Ruland W. Macromolecules, 2000, 33(5):1848-1852  doi: 10.1021/ma991427x

    17. [17]

      Zickler G A, Smarsly B, Gierlinger N, Peterlik H, Paris O. Carbon, 2006, 44(15):3239-3246  doi: 10.1016/j.carbon.2006.06.029

    18. [18]

      Tzeng S S. Carbon, 2006, 44(10):1986-1993  doi: 10.1016/j.carbon.2006.01.024

    19. [19]

      Li L L, Ji J, Fei R, Wang C X, Lu Q, Zhang J R, Jiang L P, Zhu J J. Adv Funct Mater, 2012, 22(14):2971-2979  doi: 10.1002/adfm.v22.14

    20. [20]

      Li Y, Hu Y, Zhao Y, Shi G Q, Deng L E, Hou Y B, Qu L T. Adv Mater, 2011, 23(6):776-780  doi: 10.1002/adma.201003819

    21. [21]

      González V J, Martín-Alberca C, Montalvo G, García-Ruiz C, Baselga J, Terrones M, Martin O. Carbon, 2014, 78(11):10-18
       

    22. [22]

      Lin Z Y, Waller G, Liu Y, Liu M L, Wong C P. Adv Energy Mater, 2012, 2(7):884-888  doi: 10.1002/aenm.201200038

    23. [23]

      Chang Y Z, Han G Y, Fu D Y, Liu F F, Li M Y, Li Y P, Liu C X. Electrochim Acta, 2014, 115(3):461-470
       

    24. [24]

      He Fu. Carbon, 1985, (4):1-9

  • 加载中
    1. [1]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    2. [2]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 100025-0. doi: 10.3866/PKU.WHXB202404024

    3. [3]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    4. [4]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    5. [5]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    8. [8]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    9. [9]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Zixuan Jiang Yihan Wen Kejie Chai Weiming Xu . Exploring Chemistry Bridging Education from Data-Driven to Symbol Establishment within the Framework of AI Models. University Chemistry, 2025, 40(9): 132-141. doi: 10.12461/PKU.DXHX202502004

    16. [16]

      Yalu Ma Yun Tian Xiaofei Ma . DeepSeek Large Model: Implications for Inorganic Chemistry Teaching and Learning. University Chemistry, 2025, 40(9): 171-177. doi: 10.12461/PKU.DXHX202502109

    17. [17]

      Xiaolong Zhang Mingshan Jin Shaoli Liu Bingfei Yan Yun Li . Constructing High-Precision Potential Energy Surfaces Based on Physical Models: A Comprehensive Computational Chemistry Experiment. University Chemistry, 2025, 40(10): 257-262. doi: 10.12461/PKU.DXHX202411049

    18. [18]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    19. [19]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(0)
  • Abstract views(405)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return