Citation: Saima Perveen, Lulu Qin, Min Zhao, Zhengwei Ding, Yingying Wang, Zaicheng Nie, Pengfei Li. Recent development in radical cycloaddition reactions for the synthesis of carbo- and heterocycles[J]. Chinese Chemical Letters, ;2026, 37(1): 111886. doi: 10.1016/j.cclet.2025.111886 shu

Recent development in radical cycloaddition reactions for the synthesis of carbo- and heterocycles

    * Corresponding authors.
    E-mail addresses: saima.364@mail.xjtu.edu.cn (S. Perveen), lipengfei@xjtu.edu.cn (P. Li).
    1 These authors contributed equally to this work.
  • Received Date: 19 June 2025
    Revised Date: 23 August 2025
    Accepted Date: 23 September 2025
    Available Online: 25 September 2025

Figures(75)

  • Radical cycloaddition reactions (RCRs) are highly effective methods for constructing complex carbo- and heterocycles, which are frequently encountered in natural products that exhibit intriguing biological properties and hold significant potential for applications in medicinal chemistry. Radical-mediated cycloaddition strategies, which recycle radical character, are particularly appealing because they require only a catalytic amount of reagent and promise reactions with theoretically high atom economy. This review focuses on recent developments and synthetic applications in RCRs, with an emphasis on visible light-induced radical photocycloaddition reactions (RPCRs), transition metal-catalyzed approaches, and small molecule-catalyzed methods. By highlighting some outstanding innovations and addressing current challenges, this review aims to identify potential areas for improvement. These advancements will provide more efficient pathways for the synthesis of natural product molecules and offer valuable insights for the development of new synthetic methodologies.
  • 加载中
    1. [1]

      J. Liao, X. Yang, L. Ouyang, et al., Org. Chem. Front. 8 (2021) 1345–1363.  doi: 10.1039/d0qo01453b

    2. [2]

      L. Chen, H. Huang, B. Luo, et al., New J. Chem. 47 (2023) 41–45.  doi: 10.1039/d2nj03473e

    3. [3]

      X. Zhang, J. Xu, Org. Chem. Front. 9 (2022) 6708–6716.  doi: 10.1039/d2qo01410f

    4. [4]

      A.R. Katritzky, Chem. Rev. 104 (2004) 2125–21261.

    5. [5]

      M. Gomberg, Ber. Dtsch. Chem. Ges. 33 (1900) 3150–3163.  doi: 10.1002/cber.19000330369

    6. [6]

      M. Gomberg, J. Am. Chem. Soc. 22 (1900) 757–771.  doi: 10.1021/ja02049a006

    7. [7]

      W. Zhou, X. Chen, L. Lu, et al., Chin. Chem. Lett. 35 (2024) 108902.

    8. [8]

      T. Zou, Y. He, R. Liu, et al., Chin. Chem. Lett. 34 (2023) 107822.

    9. [9]

      N. Zhang, S.R. Samanta, B.M. Rosen, V. Percec, Chem. Rev. 114 (2014) 5848–5958.  doi: 10.1021/cr400689s

    10. [10]

      M. Yan, J.C. Lo, J.T. Edwards, P.S. Baran, J. Am. Chem. Soc. 138 (2016) 12692–12714.  doi: 10.1021/jacs.6b08856

    11. [11]

      J. Jiang, K.L. Wang, X. Li, et al., Chin. Chem. Lett. 34 (2023) 108699.

    12. [12]

      X. Wang, J. Meng, D. Zhao, S. Tang, K. Sun, Chin. Chem. Lett. 34 (2023) 107736.

    13. [13]

      A. Studer, D.P. Curran, Angew. Chem. Int. Ed. 55 (2016) 58–102.  doi: 10.1002/anie.201505090

    14. [14]

      S.Z. Zard, Org. Lett. 19 (2017) 1257–1269.  doi: 10.1021/acs.orglett.7b00531

    15. [15]

      A. Deepthi, V. Sathi, V. Nair, Tetrahedron Lett. 59 (2018) 2767–2777.

    16. [16]

      J. Liao, X. Yang, L. Ouyang, et al., Org. Chem. Front. 8 (2021) 1345–1363.  doi: 10.1039/d0qo01453b

    17. [17]

      J. Panda, S. Mohapatra, M. Ansar Ahemad, S. Nayak, S. Mohapatra, ChemistrySelect 9 (2024) e202303643.

    18. [18]

      A.J. McCarroll, J.C. Walton, Angew. Chem. Int. Ed. 40 (2001) 2224–2248.

    19. [19]

      A. Gansäuer, Adv. Synth. Catal. 344 (2002) 564–564.

    20. [20]

      E. Oueis, M. Elkadi, R. Rios, Adv. Synth. Catal. 366 (2024) 635–697.  doi: 10.1002/adsc.202301295

    21. [21]

      Y. Yin, M. You, X. Lia, Z. Jiang, Chem. Soc. Rev. 54 (2025) 2246–2274.  doi: 10.1039/d5cs00019j

    22. [22]

      S. Li, J. Dong, Curr. Org. Chem. 27 (2023) 1020–1035.  doi: 10.2174/1385272827666230911115749

    23. [23]

      M. Lautens, W. Klute, W. Tam, Chem. Rev. 96 (1996) 49–92.

    24. [24]

      M. Wu, K. Ren, C. Zou, et al., Chin. Chem. Lett. 36 (2025) 110213.

    25. [25]

      M. Song, J. Zhao, E.Q. Li, et al., Chin. Chem. Lett. 33 (2022) 2372–2382.

    26. [26]

      H. Huang, M.H. Garduno-Castro, C. Morrill, D.J. Procter, Chem. Soc. Rev. 48 (2019) 4626–4638.  doi: 10.1039/c8cs00947c

    27. [27]

      J. Du, Y.F. Li, E.Q. Li, et al., Chin. Chem. Lett. 34 (2023) 108401.

    28. [28]

      M. Wang, Y. Zhang, S. Liu, et al., Chin. Chem. Lett. 36 (2025) 110758.  doi: 10.1016/j.cclet.2024.110758

    29. [29]

      Z.Q. Wang, L.W. Wei, Z.Q. Wang, et al., Chin. Chem. Lett. (2025), doi: 10.1016/j.cclet.2025.111377.  doi: 10.1016/j.cclet.2025.111377

    30. [30]

      Y. Du, L. Yao, X. Li, et al., Chin. Chem. Lett. 34 (2023) 107512.

    31. [31]

      A.S. Harmata, B.J. Roldan, C.R.J. Stephenson, Angew. Chem. Int. Ed. 62 (2023) e202213003.

    32. [32]

      X. Wang, F. Liu, T. Xu, Chin. Chem. Lett. 34 (2023) 107624.

    33. [33]

      J. Wang, Z. Li, S. Bai, et al., Chin. Chem. Lett. 34 (2023) 107823.

    34. [34]

      B.G. Cai, G.Y. Xu, J. Xuan, Chin. Chem. Lett. 34 (2023) 108335.

    35. [35]

      X.E. Cai, Z.Y. Wang, W.C. Tian, et al., Org. Biomol. Chem. 21 (2023) 6068–6082.  doi: 10.1039/d3ob00744h

    36. [36]

      M. Ramaiah, Tetrahedron Lett. 43 (1987) 3541–3676.

    37. [37]

      B. Giese, Angew. Chem. Int. Ed. 22 (1983) 753–764.

    38. [38]

      M.P. Sibi, J. Ji, Angew. Chem. Int. Ed. 36 (1997) 274–276.

    39. [39]

      M.A. Ischay, M.E. Anzovino, J. Du, T.P. Yoon, J. Am. Chem. Soc. 130 (2008) 12886–12887.  doi: 10.1021/ja805387f

    40. [40]

      J. Du, T.P. Yoon, J. Am. Chem. Soc. 131 (2009) 14604–14605.  doi: 10.1021/ja903732v

    41. [41]

      M.A. Ischay, Z. Lu, T.P. Yoon, J. Am. Chem. Soc. 132 (2010) 8572–8574.  doi: 10.1021/ja103934y

    42. [42]

      Z. Lu, T.P. Yoon, Angew. Chem. Int. Ed. 51 (2012) 10329–10332.  doi: 10.1002/anie.201204835

    43. [43]

      S.O. Scholz, J.B. Kidd, L. Capaldo, et al., Org. Lett. 23 (2021) 3496–3501.  doi: 10.1021/acs.orglett.1c00938

    44. [44]

      M.A. Ischay, M.S. Ament, T.P. Yoon, Chem. Sci. 3 (2012) 2807–2811.  doi: 10.1039/c2sc20658g

    45. [45]

      E.L. Tyson, E.P. Farney, T.P. Yoon, Org. Lett. 14 (2012) 1110–1113.  doi: 10.1021/ol3000298

    46. [46]

      E.M. Sherbrook, H. Jung, D. Cho, M.H. Baik, T.P. Yoon, Chem. Sci. 11 (2020) 856–861.  doi: 10.1039/c9sc04822g

    47. [47]

      E. Hurtley, Z. Lu, T.P. Yoon, Angew. Chem. Int. Ed. 53 (2014) 8991–8994.  doi: 10.1002/anie.201405359

    48. [48]

      J. Du, K.L. Skubi, D.M. Schultz, T.P. Yoon, Science 344 (2014) 392–396.  doi: 10.1126/science.1251511

    49. [49]

      Z.D. Miller, B.J. Lee, T.P. Yoon, Angew. Chem. Int. Ed. 56 (2017) 11891–11895.  doi: 10.1002/anie.201706975

    50. [50]

      Z.C. Girvin, L.F. Cotter, H. Yoon, et al., J. Am. Chem. Soc. 144 (2022) 20109–20117.  doi: 10.1021/jacs.2c09690

    51. [51]

      S.J. Chapman, W.B. Swords, C.M. Le, et al., J. Am. Chem. Soc. 144 (2022) 4206–4213.  doi: 10.1021/jacs.2c00063

    52. [52]

      E.F. Plachinski, R.Z. Qian, R. Villanueva, et al., J. Am. Chem. Soc. 146 (2024) 31400–31404.  doi: 10.1021/jacs.4c13596

    53. [53]

      N. Hu, H. Jung, Y. Zheng, et al., Angew. Chem. Int. Ed. 57 (2018) 6242–6246.  doi: 10.1002/anie.201802891

    54. [54]

      S.C. Coote, A. Pçthig, T. Bach, Chem. Eur. J. 21 (2015) 6906–6912.  doi: 10.1002/chem.201500173

    55. [55]

      A. Troster, R. Alonso, A. Bauer, T. Bach, J. Am. Chem. Soc. 138 (2016) 7808–7811.  doi: 10.1021/jacs.6b03221

    56. [56]

      M. de Robichon, T. Kratz, F. Beyer, et al., J. Am. Chem. Soc. 145 (2023) 24466–24470.  doi: 10.1021/jacs.3c08404

    57. [57]

      L.M. Mohr, T. Bach, Synlett 28 (2017) A–E.

    58. [58]

      L.M. Mohr, A. Bauer, C. Jandl, T. Bach, Org. Biomol. Chem. 17 (2019) 7192–7203.  doi: 10.1039/c9ob01146c

    59. [59]

      N. Jeremias, L.M. Mohr, T. Bach, Org. Lett. 23 (2021) 5674–5678.  doi: 10.1021/acs.orglett.1c01794

    60. [60]

      C. Brenninger, A. Pçthig, T. Bach, Angew. Chem. Int. Ed. 56 (2017) 4337–4341.  doi: 10.1002/anie.201700837

    61. [61]

      S. Poplata, T. Bach, J. Am. Chem. Soc. 140 (2018) 3228–3231.  doi: 10.1021/jacs.8b01011

    62. [62]

      S. Poplata, A. Bauer, G. Storch, T. Bach, Chem. Eur. J. 25 (2019) 8135–8148.  doi: 10.1002/chem.201901304

    63. [63]

      F.M. Hçrmann, C. Kerzig, T.S. Chung, A. Bauer, O.S. Wenger, T. Bach, Angew. Chem. Int. Ed. 59 (2020) 9659–9668.

    64. [64]

      T. Rigotti, T. Bach, Org. Lett. 24 (2022) 8821–8825.  doi: 10.1021/acs.orglett.2c03606

    65. [65]

      T. Rigotti, D.P. Schwinger, R. Graßl, C. Jandl, T. Bach, Chem. Sci. 13 (2022) 2378–2384.  doi: 10.1039/d2sc00113f

    66. [66]

      M. Golfmann, L. Glagow, A. Giakoumidakis, C. Golz, J.C.L. Walker, Chem. Eur. J. 29 (2023) e202202373.

    67. [67]

      M. Reinhold, J. Steinebach, C. Golz, J.C.L. Walker, Chem. Sci. 14 (2023) 9885–9891.  doi: 10.1039/d3sc03083k

    68. [68]

      M. Golfmann, M. Reinhold, J.D. Steen, et al., ACS Catal. 14 (2024) 13987–13998.  doi: 10.1021/acscatal.4c05067

    69. [69]

      R. Kleinmans, T. Pinkert, S. Dutta, et al., Nature 605 (2022) 477–482.  doi: 10.1038/s41586-022-04636-x

    70. [70]

      Y. Liang, R. Kleinmans, C.G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 144 (2022) 20207–20213.  doi: 10.1021/jacs.2c09248

    71. [71]

      R. Kleinmans, S. Dutta, K. Ozols, et al., J. Am. Chem. Soc. 145 (2023) 12324–12332.  doi: 10.1021/jacs.3c02961

    72. [72]

      J.L. Tyler, F. Schäfer, H. Shao, et al., J. Am. Chem. Soc. 146 (2024) 16237–16247.  doi: 10.1021/jacs.4c04403

    73. [73]

      S. Dutta, D. Lee, K. Ozols, et al., J. Am. Chem. Soc. 146 (2024) 2789–2797.  doi: 10.1021/jacs.3c12894

    74. [74]

      S. Dutta, Y.L. Lu, J.E. Erchinger, et al., J. Am. Chem. Soc. 146 (2024) 5232–5241.  doi: 10.1021/jacs.3c11563

    75. [75]

      Y. Liu, D. Ni, M.K. Brown, J. Am. Chem. Soc. 144 (2022) 18790–18796.  doi: 10.1021/jacs.2c08777

    76. [76]

      Y. Liu, M.K. Brown, J. Am. Chem. Soc. 145 (2023) 25061–25067.  doi: 10.1021/jacs.3c08105

    77. [77]

      W. Wang, M.K. Brown, Angew. Chem. Int. Ed. 62 (2023) e202305622.

    78. [78]

      R. Guo, Y.C. Chang, L. Herter, et al., J. Am. Chem. Soc. 144 (2022) 7988–7994.  doi: 10.1021/jacs.2c02976

    79. [79]

      Y.C. Chang, C. Salome, T. Fessard, M.K. Brown, Angew. Chem. Int. Ed. 62 (2023) e202314700.

    80. [80]

      S. Adak, P.S. Hazra, C.B. Fox, M.K. Brown, Angew. Chem. Int. Ed. 64 (2025) e202416215.

    81. [81]

      Q. Fu, S. Cao, J. Wang, et al., J. Am. Chem. Soc. 146 (2024) 8372–8380.  doi: 10.1021/jacs.3c14077

    82. [82]

      J. Jeong, S. Cao, H.J. Kang, et al., J. Am. Chem. Soc. 146 (2024) 27830–27842.  doi: 10.1021/jacs.4c10153

    83. [83]

      S. Tian, R. Liu, K. Zhang, et al., Org. Lett. 27 (2025) 3818–3824.  doi: 10.1021/acs.orglett.5c00189

    84. [84]

      W.J. Shen, X.X. Zou, M. Li, Y.Z. Cheng, S.L. You, J. Am. Chem. Soc. 147 (2025) 11667–11674.  doi: 10.1021/jacs.5c01506

    85. [85]

      B. Keen, C. Cong, A. Castanedo, et al., Org. Lett. 27 (2025) 1673–1678.  doi: 10.1021/acs.orglett.5c00054

    86. [86]

      D. Suárez-García, M.A. Rodríguez, I. Barbolla, R. Vicente, Org. Lett. 27 (2025) 3825–3830.  doi: 10.1021/acs.orglett.5c00468

    87. [87]

      Z. Lu, M. Shen, T.P. Yoon, J. Am. Chem. Soc. 133 (2011) 1162–1164.  doi: 10.1021/ja107849y

    88. [88]

      A.G. Amador, E.M. Sherbrook, T.P. Yoon, J. Am. Chem. Soc. 138 (2016) 4722–4725.  doi: 10.1021/jacs.6b01728

    89. [89]

      A.G. Amador, E.M. Sherbrook, Z. Lu, T.P. Yoon, Synthesis 50 (2018) 539–547.

    90. [90]

      A.G. Amador, E.M. Sherbrook, T.P. Yoon, Asian J. Org. Chem. 8 (2019) 978–985.  doi: 10.1002/ajoc.201900113

    91. [91]

      R. Blum, Y. Zhu, S.A. Nordeen, T.P. Yoon, Angew. Chem. Int. Ed. 53 (2014) 11056–11059.  doi: 10.1002/anie.201406393

    92. [92]

      S. Maity, M. Zhu, R.S. Shinabery, N. Zheng, Angew. Chem. Int. Ed. 51 (2012) 222–226.  doi: 10.1002/anie.201106162

    93. [93]

      T.H. Nguyen, S. Maity, N. Zheng, Beilstein J. Org. Chem. 10 (2014) 975–980.  doi: 10.3762/bjoc.10.96

    94. [94]

      T.H. Nguyen, S.A. Morris, N. Zheng, Adv. Synth. Catal. 356 (2014) 2831–2837.  doi: 10.1002/adsc.201400742

    95. [95]

      Y. Cai, J. Wang, Y. Zhang, et al., J. Am. Chem. Soc. 139 (2017) 12259–12266.  doi: 10.1021/jacs.7b06319

    96. [96]

      C. Wang, X. Ren, H. Xie, Z. Lu, Chem. Eur. J. 21 (2015) 9676–9680.  doi: 10.1002/chem.201500873

    97. [97]

      X. Huang, J. Lin, T. Shen, et al., Angew. Chem. Int. Ed. 57 (2018) 5454–5458.  doi: 10.1002/anie.201802316

    98. [98]

      D. Staveness, T.M. Sodano, K. Li, et al., Chem 5 (2019) 215–226.

    99. [99]

      D. Staveness, J.L. Collins III, R.C. McAtee, C.R.J. Stephenson, Angew. Chem. Int. Ed. 58 (2019) 19000–19006.  doi: 10.1002/anie.201909492

    100. [100]

      J.L. Collins III, D. Staveness, M.J. Sowden, C.R.J. Stephenson, Org. Lett. 24 (2022) 4344–4348.  doi: 10.1021/acs.orglett.2c01483

    101. [101]

      A.R. Allen, A.E. Tharp, C.R.J. Stephenson, ChemRxiv (2022), doi: 10.26434/chemrxiv-2022-42h36.  doi: 10.26434/chemrxiv-2022-42h36

    102. [102]

      A.S. Harmata, E. Tatunashvili, A. Chang, T. Wang, C.R.J. Stephenson, Angew. Chem. Int. Ed. 64 (2025) e202413695.

    103. [103]

      D. Uraguchi, Y. Kimura, F. Ueoka, T. Ooi, J. Am. Chem. Soc. 142 (2020) 19462–19467.  doi: 10.1021/jacs.0c09468

    104. [104]

      Y. Yin, Y. Li, T.P. Goncalves, et al., J. Am. Chem. Soc. 142 (2020) 19451–19456.  doi: 10.1021/jacs.0c08329

    105. [105]

      Y. Dai, S. Liang, G. Zeng, et al., Chem. Sci. 13 (2022) 3787–3795.  doi: 10.1039/d1sc07044d

    106. [106]

      N. Tang, Y. Xu, T. Niu, et al., Org. Chem. Front. 8 (2021) 3118.  doi: 10.1039/d1qo00201e

    107. [107]

      J. Paternoga, J. Kuhlborn, N.O. Rossdam, T. Opatz, J. Org. Chem. 86 (2021) 3232.  doi: 10.1021/acs.joc.0c02591

    108. [108]

      Y. Zheng, W. Huang, R.K. Dhungana, et al., J. Am. Chem. Soc. 144 (2022) 23685.  doi: 10.1021/jacs.2c11501

    109. [109]

      L. Mollari, M.A. Valle-Amores, A.M. Martıńez-Gualda, et al., Chem. Commun. 58 (2022) 1334–1337.  doi: 10.1039/d1cc05867c

    110. [110]

      S. Le, J. Li, G. Feng, et al., Nat. Commun. 13 (2022) 4734.

    111. [111]

      P. Bellotti, T. Rogge, F. Paulus, et al., J. Am. Chem. Soc. 144 (2022) 15662–15671.  doi: 10.1021/jacs.2c05687

    112. [112]

      W. Lee, Y. Koo, H. Jung, S. Chang, S. Hong, Nat. Chem. 15 (2023) 1091–1099.  doi: 10.1038/s41557-023-01258-2

    113. [113]

      T.V.T. Nguyen, A. Bossonnet, M.D. Wodrich, J. Waser, J. Am. Chem. Soc. 145 (2023) 25411–25421.  doi: 10.1021/jacs.3c09789

    114. [114]

      A. Petti, M.J. Karrasch, P. Chahar, et al., J. Am. Chem. Soc. 147 (2025) 13276–13285.  doi: 10.1021/jacs.4c18080

    115. [115]

      S. Lin, M.A. Ischay, C.G. Fry, T.P. Yoon, J. Am. Chem. Soc. 133 (2011) 19350–19353.  doi: 10.1021/ja2093579

    116. [116]

      S. Lin, S.D. Lies, C.S. Gravatt, T.P. Yoon, Org. Lett. 19 (2017) 368–371.  doi: 10.1021/acs.orglett.6b03545

    117. [117]

      S.P. Pitre, J.C. Scaiano, T.P. Yoon, ACS Catal. 7 (2017) 6440–6444.  doi: 10.1021/acscatal.7b02223

    118. [118]

      J. Wang, N. Zheng, Angew. Chem. Int. Ed. 54 (2015) 11424–11427.  doi: 10.1002/anie.201504076

    119. [119]

      J. Ma, S. Chen, P. Bellotti, et al., Science 371 (2021) 1338–1345.  doi: 10.1126/science.abg0720

    120. [120]

      R. Guo, S. Adak, P. Bellotti, et al., J. Am. Chem. Soc. 144 (2022) 17680–17691.  doi: 10.1021/jacs.2c07726

    121. [121]

      A.S. Harmata, T.E. Spiller, M.J. Sowden, C.R.J. Stephenson, J. Am. Chem. Soc. 143 (2021) 21223–21228.  doi: 10.1021/jacs.1c10541

    122. [122]

      Z. Luo, Z. Xing, R. Gao, et al., Org. Biomol. Chem. 21 (2023) 4637–4642.  doi: 10.1039/d3ob00527e

    123. [123]

      M. Wei, C. Liu, C.S. Wang, et al., Green Chem. 25 (2023) 2453–2457.  doi: 10.1039/d2gc04491a

    124. [124]

      T. Horibe, K. Katagiri, K. Ishihara, Adv. Synth. Catal. 362 (2020) 960–963.  doi: 10.1002/adsc.201901337

    125. [125]

      Z. Zhang, J.B. Stöckrath, S. Grimme, A. Gansäuer, Angew. Chem. Int. Ed. 60 (2021) 14339–14344.  doi: 10.1002/anie.202102739

    126. [126]

      S. Agasti, F. Beltran, E. Pye, et al., Nat. Chem. 15 (2023) 535–541.  doi: 10.1038/s41557-023-01135-y

    127. [127]

      A. Gansäuer, M. Behlendorf, D. von Laufenberg, et al., Angew. Chem. Int. Ed. 51 (2012) 4739–4742.  doi: 10.1002/anie.201200431

    128. [128]

      W.A. Nugent, T.V. RajanBabu, J. Am. Chem. Soc. 110 (1988) 8561–8562.  doi: 10.1021/ja00233a051

    129. [129]

      W. Hao, X. Wu, J.Z. Sun, et al., J. Am. Chem. Soc. 139 (2017) 12141–12144.  doi: 10.1021/jacs.7b06723

    130. [130]

      W. Hao, J.H. Harenberg, X. Wu, S.N. MacMillan, S. Lin, J. Am. Chem. Soc. 140 (2018) 3514–3517.  doi: 10.1021/jacs.7b13710

    131. [131]

      S.G. Robinson, X. Wu, B. Jiang, M.S. Sigman, S. Lin, J. Am. Chem. Soc. 142 (2020) 18471–18482.  doi: 10.1021/jacs.0c07128

    132. [132]

      M.N. Zhao, Z.H. Ren, D.S. Yang, Z.H. Guan, Org. Lett. 20 (2018) 1287–1290.  doi: 10.1021/acs.orglett.7b04007

    133. [133]

      Y. Kuang, Y. Ning, J. Zhu, Y. Wang, Org. Lett. 20 (2018) 2693–2697.  doi: 10.1021/acs.orglett.8b00904

    134. [134]

      W. Liu, Y. Kuang, Z. Wang, J. Zhu, Y. Wang, Beilstein J. Org. Chem. 15 (2019) 542–550.  doi: 10.3762/bjoc.15.48

    135. [135]

      H.M. Huang, J.J.W. McDouall, D.J. Procter, Nat. Catal. 2 (2019) 211–218.  doi: 10.1038/s41929-018-0219-x

    136. [136]

      H.M. Huang, Q. He, D.J. Procter, Synlett 31 (2020) 45–50.

    137. [137]

      S. Agasti, N.A. Beattie, J.J.W. McDouall, D.J. Procter, J. Am. Chem. Soc. 143 (2021) 3655–3661.  doi: 10.1021/jacs.1c01356

    138. [138]

      J.I. Mansell, S. Yu, M. Li, et al., J. Am. Chem. Soc. 146 (2024) 12799–12807.  doi: 10.1021/jacs.4c03073

    139. [139]

      G. Qin, Y. Wang, H. Huang, Org. Lett. 19 (2017) 6352–6355.  doi: 10.1021/acs.orglett.7b03194

    140. [140]

      J. Shi, X.J. Li, S.Y. Jiang, W. Wu, H. Ren, ACS Catal. 14 (2024) 5605–5611.  doi: 10.1021/acscatal.4c00637

    141. [141]

      W. Liang, K. Jiang, F. Du, et al., Angew. Chem. Int. Ed. 59 (2020) 19222–19228.  doi: 10.1002/anie.202007825

    142. [142]

      F. Du, S.J. Li, K. Jiang, et al., Angew. Chem. Int. Ed. 59 (2020) 23755–23762.  doi: 10.1002/anie.202010752

    143. [143]

      K.S. Feldman, A.L. Romanelli, R.E. Ruckle Jr., R.F. Miller, J. Am. Chem. Soc. 110 (1988) 3300–3302.  doi: 10.1021/ja00218a050

    144. [144]

      K.S. Feldman, R.E. Ruckle Jr., A.L. Romanelli, Tetrahedron Lett. 30 (1989) 5845–5848.

    145. [145]

      K.S. Feldman, A.L. Romanelli, R.E. Ruckle Jr., G. Jean, J. Org. Chem. 57 (1992) 100–110.  doi: 10.1021/jo00027a020

    146. [146]

      K. Miura, K. Fugami, K. Oshima, K. Utimoto, Tetrahedron Lett. 29 (1988) 5135–5138.

    147. [147]

      C.C. Huval, D.A. Singleton, J. Org. Chem. 59 (1994) 2020–2024.  doi: 10.1021/jo00087a015

    148. [148]

      C.C. Huval, D.A. Singleton, Tetrahedron Lett. 35 (1994) 689–690.

    149. [149]

      D.A. Singleton, K.M. Church, J. Org. Chem. 55 (1990) 4780–4782.  doi: 10.1021/jo00303a002

    150. [150]

      T. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 6 (2014) 702–706.

    151. [151]

      T. Hashimoto, K. Takino, K. Hato, K. Maruoka, Angew. Chem. Int. Ed. 55 (2016) 8081–8085.  doi: 10.1002/anie.201602723

    152. [152]

      J.M. Ryss, A.K. Turek, S.J. Miller, Org. Lett. 20 (2018) 1621–1625.  doi: 10.1021/acs.orglett.8b00364

    153. [153]

      A.K. Turek, M.H. Sak, S.J. Miller, J. Am. Chem. Soc. 143 (2021) 16173–16183.  doi: 10.1021/jacs.1c07323

    154. [154]

      T. Fukuyama, T. Kippo, K. Hamaoka, I. Ryu, Sci. China Chem. 62 (2019) 1525–1528.  doi: 10.1007/s11426-019-9595-0

    155. [155]

      Q.Q. Zhao, X.S. Zhou, S.H. Xu, et al., Org. Lett. 22 (2020) 2470–2475.  doi: 10.1021/acs.orglett.0c00712

    156. [156]

      D.F. Chen, C.H. Chrisman, G.M. Miyake, ACS Catal. 10 (2020) 2609–2614.  doi: 10.1021/acscatal.0c00281

    157. [157]

      G. Archer, P. Cavalère, M. Médebielle, J. Merad, Angew. Chem. Int. Ed. 61 (2022) e202205596.

    158. [158]

      J. Doe, Radical reactions in organic chemistry, in: J. Smith (Ed.), Advances in Organic Chemistry, Wiley, 2023, pp. 123–145.

    159. [159]

      J. Wang, Y.L. Phang, Y.J. Yu, et al., Angew. Chem. Int. Ed. 63 (2024) e202405863.

    160. [160]

      Z. Ding, Z. Liu, Z. Wang, et al., J. Am. Chem. Soc. 144 (2022) 8870–8882.  doi: 10.1021/jacs.2c03673

    161. [161]

      M. Xu, Z. Wang, Z. Sun, et al., Angew. Chem. Int. Ed. 61 (2022) e202214507.

    162. [162]

      T. Yu, J. Yang, Z. Wang, et al., J. Am. Chem. Soc. 145 (2023) 4304–4310.  doi: 10.1021/jacs.2c13740

    163. [163]

      J. Wen, Z. Ding, P. Li, Org. Lett. 26 (2024) 7021–7025.  doi: 10.1021/acs.orglett.4c02565

    164. [164]

      L. Qin, T. Yu, Z. Ding, M. Zhao, P. Li, Synthesis 57 (2025) 2633–2649.  doi: 10.1055/a-2511-4274)

    165. [165]

      K. Zhang, Y. Xia, S. Tian, et al., ChemCatChem (2025) e202401909.

    166. [166]

      Y. Liu, S. Lin, Z. Ding, et al., Chem 10 (2024) 3699–3708.

    167. [167]

      H. Huang, X.D. An, Y.F. Wang, Y.X. Tan, P. Tian, Adv. Synth. Catal. 367 (2025) e202401015.

    168. [168]

      T. Li, L. Wei, Z. Wang, et al., Org. Lett. 26 (2024) 5341–5346.  doi: 10.1021/acs.orglett.4c01724

    169. [169]

      Y. Liu, S. Lin, Y. Li, et al., ACS Catal. 13 (2023) 5096–5103.  doi: 10.1021/acscatal.3c00305

    170. [170]

      T. Yu, X. Zhao, Z. Nie, et al., Angew. Chem. Int. Ed. 64 (2025) e202420831.

    171. [171]

      Z. Ding, Z. Wang, Y. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202406612.

  • 加载中
    1. [1]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

    2. [2]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    3. [3]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    4. [4]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    5. [5]

      Pan ZhouTing ZouHong-Jian SongYu-Xiu LiuQing-Min Wang . Advances in organoelectrochemical copper-catalyzed reactions. Chinese Chemical Letters, 2026, 37(1): 111673-. doi: 10.1016/j.cclet.2025.111673

    6. [6]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    7. [7]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    8. [8]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    9. [9]

      Junliang ZhouTian-Bing RenLin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644

    10. [10]

      Hui-Xian JiangZhi-Tao LiuPei XuXu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224

    11. [11]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    12. [12]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    13. [13]

      Ruolin CHENGYue WANGFei YANGHuagen LIANGShijian LU . Application of metal-organic frameworks (MOFs) in photocatalytic CO2 cycloaddition reaction: A mini review. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2429-2440. doi: 10.11862/CJIC.20250242

    14. [14]

      Shengyi GongGuoqiang Feng . Visible light-triggered NIR ratiometric fluorescent metal-free CO-releasing molecule for self-monitoring of CO delivery and effective cancer therapy. Chinese Chemical Letters, 2025, 36(7): 110409-. doi: 10.1016/j.cclet.2024.110409

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    17. [17]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    18. [18]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    19. [19]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    20. [20]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return