Balancing switching and transient response for ion gating in field-effect nanofluidic transistors
-
* Corresponding author.
E-mail address: pcgao@cug.edu.cn (P. Gao).
Citation:
Xiaoqing Wu, Yajie Chen, Dagui Wang, Song Pu, Qiujiao Du, Pengcheng Gao. Balancing switching and transient response for ion gating in field-effect nanofluidic transistors[J]. Chinese Chemical Letters,
;2026, 37(1): 111623.
doi:
10.1016/j.cclet.2025.111623
P.A. Merolla, J.V. Arthur, R. Alvarez-Icaza, et al., Science 345 (2014) 668–673.
doi: 10.1126/science.1254642
W. Zhang, B. Gao, J. Tang, et al., Nat. Electron. 3 (2020) 371–382.
doi: 10.1038/s41928-020-0435-7
F.J. Sigworth, Nature 423 (2003) 21–22.
doi: 10.1038/423021a
M.Ø. Jensen, V. Jogini, D.W. Borhani, et al., Science 336 (2012) 229–233.
doi: 10.1126/science.1216533
C. Cea, G.D. Spyropoulos, P. Jastrzebska-Perfect, et al., Nat. Mater. 19 (2020) 679–686.
doi: 10.1038/s41563-020-0638-3
A. Sebastian, M.L. Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Nat. Nanotechnol. 15 (2020) 529–544.
doi: 10.1038/s41565-020-0655-z
P. Robin, N. Kavokine, L. Bocquet, et al., Science 373 (2021) 687–691.
doi: 10.1126/science.abf7923
C. Dai, Y. Liu, D. Wei, Chem. Rev. 122 (2022) 10319–10392.
doi: 10.1021/acs.chemrev.1c00924
S. Goutham, A. Keerthi, A. Ismail, et al., Nat. Nanotechnol. 18 (2023) 596–601.
doi: 10.1038/s41565-023-01337-y
I. Fakih, O. Durnan, F. Mahvash, et al., Nat. Commun. 11 (2020) 3226.
doi: 10.1038/s41467-020-16979-y
C. Wang, H. Xie, R. Xie, et al., Chin. Chem. Lett. 36 (2025) 110642.
doi: 10.1016/j.cclet.2024.110642
Z. Wu, L. Lin. Chin. Chem. Lett. 33 (2022) 1752–1756.
doi: 10.1016/j.cclet.2021.08.100
Q. Wang, X. Wang, M. Xu, X. Lou, F. Xia, Chin. Chem. Lett. 30 (2019) 1557–1564.
doi: 10.3390/w11081557
I. Ferain, C.A. Colinge, J.P. Colinge, Nature 479 (2011) 310–316.
doi: 10.1038/nature10676
Y. Liu, X. Duan, H.J. Shin, et al. Nature 591 (2021) 43–53.
doi: 10.1038/s41586-021-03339-z
W. Liu, T. Mei, Z. Cao, et al., Sci. Adv. 10 (2024) eadj7867.
doi: 10.1126/sciadv.adj7867
S. Ippolito, A.G. Kelly, R.F. de Oliveira, et al., Nat. Nanotechnol. 16 (2021) 592–598.
doi: 10.1038/s41565-021-00857-9
Y. Xue, Y. Xia, S. Yang, et al., Science 372 (2021) 501–503.
doi: 10.1126/science.abb5144
M. Zhang, G. Xu, H. Zhang, et al., ACS Nano 19 (2025) 10589–10598.
doi: 10.1021/acsnano.4c17760
D. Gao, P.S. Lee, Science 367 (2020) 735–736.
doi: 10.1126/science.aba6270
Y. Zhou, X. Liao, J. Han, T. Chen, C. Wang, Chin. Chem. Lett. 31 (2020) 2414–2422.
doi: 10.1016/j.cclet.2020.05.033
M. Deng, M. Yang, Y. Xu, et al., Chin. Chem. Lett. 30 (2019) 1397–1400.
doi: 10.1016/j.cclet.2019.04.003
R.H. Tunuguntla, R.Y. Henley, Y.C. Yao, et al., Science 357 (2017) 792–796.
doi: 10.1126/science.aan2438
L. Bocquet, Nat. Mater. 19 (2020) 254–256.
doi: 10.1038/s41563-020-0625-8
K. Boahen, Nature 612 (2022) 43–50.
doi: 10.1038/s41586-022-05340-6
Y. Hou, Y. Ling, Y. Wang, et al., J. Phys. Chem. Lett. 14 (2023) 2891–2900.
doi: 10.1021/acs.jpclett.2c03930
L. Yang, P. Liu, C. Zhu, et al., Chin. Chem. Lett. 32 (2021) 822–825.
doi: 10.1016/j.cclet.2020.04.047
P. Cao, Y. Wang, L. Yu, et al., Chin. Chem. Lett. 35 (2024) 109421.
doi: 10.1016/j.cclet.2023.109421
C. Leighton, Nat. Mater. 18 (2019) 13–18.
doi: 10.1038/s41563-018-0246-7
R. Karnik, R. Fan, M. Yue, et al., Nano Lett. 5 (2005) 943–948.
doi: 10.1021/nl050493b
A. Esfandiar, B. Radha, F.C. Wang, et al., Science 358 (2017) 511–513.
doi: 10.1126/science.aan5275
Z.Q. Wu, Z.Q. Li, X.L. Ding, Y.L. Hu, X.H. Xia, J. Phys. Chem. C 125 (2021) 24622–24629.
doi: 10.1021/acs.jpcc.1c06884
K. Lin, C.Y. Lin, J.W. Polster, Y. Chen, Z.S. Siwy, J. Am. Chem. Soc. 142 (2020) 2925–2934.
doi: 10.1021/jacs.9b11537
T.J. Liu, T. Ma, C.Y. Lin, S. Balme, J.P. Hsu, J. Phys. Chem. Lett. 12 (2021) 11858–11864.
doi: 10.1021/acs.jpclett.1c03513
Y.L. Hu, Y. Hua, Z.Q. Pan, et al., Nano Lett. 22 (2022) 3678–3684.
doi: 10.1021/acs.nanolett.2c00312
S. Xue, L.H. Yeh, Y. Ma, S. Qian, J. Phys. Chem. C 118 (2014) 6090–6099.
doi: 10.1021/jp500996b
T. Emmerich, K.S. Vasu, A. Niguès, et al., Nat. Mater. 21 (2022) 696–702.
doi: 10.1038/s41563-022-01229-x
E.T. Acar, S.F. Buchsbaum, C. Combs, F. Fornasiero, Z.S. Siwy, Sci. Adv. 5 (2019) eaav2568.
doi: 10.1126/sciadv.aav2568
Q. Ma, Y. Li, R. Wang, et al., Nat. Commun. 12 (2021) 1573.
doi: 10.1038/s41467-021-21507-7
G. Pérez-Mitta, J.S. Tuninetti, W. Knoll, et al., J. Am. Chem. Soc. 137 (2015) 6011–6017.
doi: 10.1021/jacs.5b01638
G. Pérez-Mitta, A. Peinetti, M. Cortez, et al., Nano Lett. 18 (2018) 3303–3310.
doi: 10.1021/acs.nanolett.8b01281
G. Pérez-Mitta, W.A. Marmisollé, C. Trautmann, M.E. Toimil-Molares, O. Azzaroni, Adv. Mater. 29 (2017) 1700972.
doi: 10.1002/adma.201700972
R. Fan, M. Yue, R. Karnik, A. Majumdar, P. Yang, Phys. Rev. Lett. 95 (2005) 086607.
doi: 10.1103/PhysRevLett.95.086607
X. Wu, C. Che, X. Wang, et al., Anal. Chem. 93 (2021) 16043–16050.
doi: 10.1021/acs.analchem.1c03631
X. Wu, Y. Li, H. Xu, et al., Anal. Chem. 93 (2021) 13711–13718.
doi: 10.1021/acs.analchem.1c03431
Y. Liu, L. Yobas, ACS Nano 10 (2016) 3985–3994.
doi: 10.1021/acsnano.6b00610
T. Liu, X. Wu, H. Xu, et al., Anal. Chem. 93 (2021) 13054–13062.
doi: 10.1021/acs.analchem.1c03010
R. Karnik, K. Castelino, A. Majumdar, Appl. Phys. Lett. 88 (2006) 123114.
doi: 10.1063/1.2186967
P. Robin, T. Emmerich, A. Ismail, et al., Science 379 (2023) 161–167.
doi: 10.1126/science.adc9931
K. Tybrandt, R. Forchheimer, M. Berggren, Nat. Commun. 3 (2012) 871.
doi: 10.1038/ncomms1869
H. Daiguji, Y. Oka, K. Shirono, Nano Lett. 5 (2005) 2274–2280.
doi: 10.1021/nl051646y
X. Zhu, L. Guo, S. Ni, X. Zhang, Y. Liu, J. Phys. Chem. Lett. 7 (2016) 5235–5241.
doi: 10.1021/acs.jpclett.6b02563
C. Lee, L. Joly, A. Siria, et al., Nano Lett. 12 (2012) 4037–4044.
doi: 10.1021/nl301412b
X. Wu, Y. Chen, X. Wang, et al., Anal. Chem. 97 (2025) 2658–2666.
doi: 10.1021/acs.analchem.4c03696
I. Vlassiouk, S. Smirnov, Z. Siwy, Nano Lett. 8 (2008) 1978–1985.
doi: 10.1021/nl800949k
N. Kavokine, R.R. Netz, L. Bocquet, Annu. Rev. Fluid Mech. 53 (2021) 377–410.
doi: 10.1146/annurev-fluid-071320-095958
W. Guan, R. Fan, M.A. Reed, Nat. Commun. 2 (2011) 506.
doi: 10.1038/ncomms1514
E.B. Kalman, I. Vlassiouk, Z.S. Siwy, Adv. Mater. 20 (2008) 293–297.
doi: 10.1002/adma.200701867
W. Xin, J. Fu, Y. Qian, et al., Nat. Commun. 13 (2022) 1701.
doi: 10.1038/s41467-022-29382-6
Weiwei Liu , Yu Liu , Zhaoyan Tian , Zhaohan Wang , Hui Liu , Songqin Liu , Yafeng Wu . Online detecting living cells released TNF-α and studying intercellular communication using SuperDNA self-assembled conical nanochannel. Chinese Chemical Letters, 2025, 36(5): 110561-. doi: 10.1016/j.cclet.2024.110561
Chong Wang , Hao Xie , Rulan Xia , Xuewei Liao , Jin Wang , Huajun Yang , Chen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642
Bowen Song , Chenxu Shi , Yinghao Qu , Hongjun Liu , Hui Yang , Xiaoming Wu , Xijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Changgui Tong , Yan Zhao , Sheng Lin , Yong Zhang , Qixian Chen , Yue Wang . Augmenting stealth attributes and intracellular trafficking of polyplex micelles via charge-switching corona for superior gene transduction. Chinese Chemical Letters, 2025, 36(10): 110796-. doi: 10.1016/j.cclet.2024.110796
Jia-hui Li , Jinkai Qiu , Cheng Lian . Lithium-ion rapid transport mechanism and channel design in solid electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100381-100381. doi: 10.1016/j.cjsc.2024.100381
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Boosting bulk charge transport of CuWO4 photoanodes via Cs doping for solar water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100207-100207. doi: 10.1016/j.cjsc.2023.100207
Ruofan Qi , Jing Zhang , Wang Sun , Bai Yu , Zhenhua Wang , Kening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009
Nan Zhang , Qian Yan , Xiaorui Dong , Jingyang Wang , Fan Jin , Jiaxuan Liu , Dianlong Wang , Huakun Liu , Bo Wang , Shixue Dou . Overcoming electron/ion transport barriers in NASICON-type cathode through mixed-conducting interphase. Chinese Chemical Letters, 2025, 36(9): 110328-. doi: 10.1016/j.cclet.2024.110328
Chang Liu , Zirui Song , Xinglan Deng , Shihong Xu , Renji Zheng , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081
Boyuan Hu , Jian Zhang , Yulin Yang , Yayu Dong , Jiaqi Wang , Wei Wang , Kaifeng Lin , Debin Xia . Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chinese Chemical Letters, 2024, 35(7): 108933-. doi: 10.1016/j.cclet.2023.108933
Yue Zheng , Tianpeng Huang , Pengxian Han , Jun Ma , Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Cheng-Shuang Wang , Bing-Yu Zhou , Yi-Feng Wang , Cheng Yuan , Bo-Han Kou , Wei-Wei Zhao , Jing-Juan Xu . Bifunctional iron-porphyrin metal-organic frameworks for organic photoelectrochemical transistor gating and biosensing. Chinese Chemical Letters, 2025, 36(3): 110080-. doi: 10.1016/j.cclet.2024.110080
Peng Meng , Qian-Cheng Luo , Aidan Brock , Xiaodong Wang , Mahboobeh Shahbazi , Aaron Micallef , John McMurtrie , Dongchen Qi , Yan-Zhen Zheng , Jingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542
Jiayi Guo , Liangxiong Ling , Qinwei Lu , Yi Zhou , Xubiao Luo , Yanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380
Zixi Zou , Jingyuan Wang , Yian Sun , Qian Wang , Da-Hui Qu . Controlling molecular assembly on time scale: Time-dependent multicolor fluorescence for information encryption. Chinese Chemical Letters, 2024, 35(7): 108972-. doi: 10.1016/j.cclet.2023.108972
He Zhao , Baiyang Fan , Siwen Hu , Xingliang Liu , Bo Tang , Pengchong Xue . Guest-triggered gate-opening of flexible hydrogen-bonded framework for separation of styrene and ethylbenzene. Chinese Chemical Letters, 2025, 36(10): 111005-. doi: 10.1016/j.cclet.2025.111005