Design strategies of Si-based anode for solid-state batteries
-
* Corresponding author.
E-mail address: ylding@hnu.edu.cn (Y.-L. Ding).
Citation:
Peining Zhu, Xi Guo, Qinqin Yu, Zuyong Wang, Xiangxiao Lei, Zhiwei Zhu, Juan Du, Xiaojia Zhang, Yuan-Li Ding. Design strategies of Si-based anode for solid-state batteries[J]. Chinese Chemical Letters,
;2025, 36(9): 111383.
doi:
10.1016/j.cclet.2025.111383
C. Li, Z. Wang, Z. He, et al., Sustain. Mater. Technol. 29 (2021) e00297.
doi: 10.1016/j.susmat.2021.e00297
A. Machín, C. Morant, F. Márquez, Batteries 10 (2024) 29.
doi: 10.3390/batteries10010029
C. Heubner, S. Maletti, H. Auer, et al., Adv. Funct. Mater. 31 (2021) 2106608.
doi: 10.1002/adfm.202106608
J. Janek, W.G. Zeier, Nat. Energy 8 (2023) 230–240.
doi: 10.1038/s41560-023-01208-9
Z. Zhang, X. Zhang, Y. Liu, et al., Nat. Commun. 16 (2025) 1013.
doi: 10.1038/s41467-025-56366-z
Y. Guo, S. Wu, Y.B. He, et al., eScience 2 (2022) 138–163.
doi: 10.1016/j.esci.2022.02.008
A. Mauger, C.M. Julien, A. Paolella, et al., Materials (Basel) 12 (2019) 3892.
doi: 10.3390/ma12233892
T. Famprikis, P. Canepa, J.A. Dawson, et al., Nat. Mater. 18 (2019) 1278–1291.
doi: 10.1038/s41563-019-0431-3
Q. Yu, K. Jiang, C. Yu, et al., Chin. Chem. Lett. 32 (2021) 2659–2678.
doi: 10.1016/j.cclet.2021.03.032
Y. Zheng, Y. Yao, J. Ou, et al., Chem. Soc. Rev. 49 (2020) 8790–8839.
doi: 10.1039/d0cs00305k
Z. Gao, H. Sun, L. Fu, et al., Adv. Mater. 30 (2018) 1705702.
doi: 10.1002/adma.201705702
P. Albertus, V. Anandan, C. Ban, et al., ACS Energy Lett. 6 (2021) 1399–1404.
doi: 10.1021/acsenergylett.1c00445
Y. Li, Y. Xu, X. Han, et al., Chin. Chem. Lett. 35 (2024) 109189.
doi: 10.1016/j.cclet.2023.109189
D. Spencer-Jolly, V. Agarwal, C. Doerrer, et al., Joule 7 (2023) 503–514.
doi: 10.1016/j.joule.2023.02.001
J.K. Eckhardt, P.J. Klar, J. Janek, et al., ACS Appl. Mater. Interfaces 14 (2022) 35545–35554.
doi: 10.1021/acsami.2c07077
C. Kim, J. Kim, J. Park, et al., Adv. Energy Mater. 11 (2021) 2102045.
doi: 10.1002/aenm.202102045
K. Takada, T. Inada, A. Kajiyama, et al., Solid State Ionics 158 (2003) 269–274.
doi: 10.1016/S0167-2738(02)00823-8
S. Yang, K. Yamamoto, X. Mei, et al., ACS Appl. Energy Mater. 5 (2022) 667–673.
doi: 10.1021/acsaem.1c03166
M. Wu, J.Y. Kim, O.B. Chae, et al., ACS Appl. Mater. Interfaces 13 (2021) 2576–2583.
doi: 10.1021/acsami.0c04769
Y. Yamagishi, H. Morita, Y. Nomura, et al., J. Phys. Chem. Lett. 12 (2021) 4623–4627.
doi: 10.1021/acs.jpclett.1c01089
Y. Su, L. Ye, W. Fitzhugh, et al., Energy Environ. Sci. 13 (2020) 908–916.
doi: 10.1039/c9ee04007b
L. Ye, Y. Lu, Y. Wang, et al., Nat. Mater. 23 (2024) 244–251.
doi: 10.1038/s41563-023-01722-x
T. Wang, W. Luo, Y. Huang, Acc. Chem. Res. 56 (2023) 667–676.
doi: 10.1021/acs.accounts.2c00822
D.K. Singh, T. Fuchs, C. Krempaszky, et al., Adv. Funct. Mater. 33 (2023) 2211067.
doi: 10.1002/adfm.202211067
T. Krauskopf, F.H. Richter, W.G. Zeier, et al., Chem. Rev. 120 (2020) 7745–7794.
doi: 10.1021/acs.chemrev.0c00431
K.B. Hatzell, X.C. Chen, C.L. Cobb, et al., ACS Energy Lett. 5 (2020) 922–934.
doi: 10.1021/acsenergylett.9b02668
C. Shen, M. Yan, X. Liao, et al., ACS Nano 18 (2024) 5068–5078.
doi: 10.1021/acsnano.3c11724
L. Ye, X. Li, Nature 593 (2021) 218–222.
doi: 10.1038/s41586-021-03486-3
Z. Wang, J. Zhao, X. Zhang, et al., eScience 3 (2023) 100087.
doi: 10.1016/j.esci.2022.100087
J.A.S. Oh, J. Sun, M. Goh, et al., Adv. Energy Mater. 11 (2021) 2101228.
doi: 10.1002/aenm.202101228
T. Palaniselvam, A.I. Freytag, H. Moon, et al., J. Phys. Chem. C 126 (2022) 13043–13052.
doi: 10.1021/acs.jpcc.2c04024
Z. Fan, B. Ding, Z. Li, et al., Small 18 (2022) 2204037.
doi: 10.1002/smll.202204037
J.A. Weeks, S.C. Tinkey, P.A. Ward, et al., Inorganics 5 (2017) 83.
doi: 10.3390/inorganics5040083
L. Zhang, Q.K. Meng, X.P. Feng, et al., Rare Met. 43 (2024) 575–587.
doi: 10.1007/s12598-023-02468-w
J.A. Lewis, K.A. Cavallaro, Y. Liu, et al., Joule 6 (2022) 1418–1430.
doi: 10.1016/j.joule.2022.05.016
J. Zhu, J. Feng, L. Lu, et al., J. Power Sources 197 (2012) 224–230.
doi: 10.1016/j.jpowsour.2011.08.115
T. Gao, L. Li, S. Yan, et al., Electrochim. Acta 416 (2022) 140287.
doi: 10.1016/j.electacta.2022.140287
Y. Xia, B. Sun, S. Zhu, et al., J. Solid State Chem. 269 (2019) 132–137.
doi: 10.1016/j.jssc.2018.09.024
W. Ping, C. Yang, Y. Bao, et al., Energy Storage Mater. 21 (2019) 246–252.
doi: 10.1016/j.ensm.2019.06.024
S. Cangaz, F. Hippauf, F.S. Reuter, et al., Adv. Energy Mater. 10 (2020) 2001320.
doi: 10.1002/aenm.202001320
Z. Sun, Q. Yin, H. Chen, et al., Interdiscip. Mater. 2 (2023) 635–663.
doi: 10.1002/idm2.12111
A. Song, W. Zhang, H. Guo, et al., Adv. Energy Mater. 13 (2023) 2301464.
doi: 10.1002/aenm.202301464
H. Liu, Q. Sun, H. Zhang, et al., Energy Storage Mater. 55 (2023) 244–263.
doi: 10.1016/j.ensm.2022.11.054
W. Yan, Z. Mu, Z. Wang, et al., Nat. Energy 8 (2023) 800–813.
doi: 10.1038/s41560-023-01279-8
H.D. Lim, J.H. Park, H.J. Shin, et al., Energy Storage Mater. 25 (2020) 224–250.
doi: 10.1016/j.ensm.2019.10.011
L. Gu, J. Han, M. Chen, et al., Energy Storage Mater. 52 (2022) 547–561.
doi: 10.1016/j.ensm.2022.08.028
N. Ohta, S. Kimura, J. Sakabe, et al., ACS Appl. Energy Mater. 2 (2019) 7005–7008.
doi: 10.1021/acsaem.9b01517
X. Han, M. Xu, L.H. Gu, et al., Rare Met. 43 (2024) 1017–1029.
doi: 10.1007/s12598-023-02498-4
D. Cao, T. Ji, A. Singh, et al., Adv. Energy Mater. 13 (2023) 2203969.
doi: 10.1002/aenm.202203969
H. Huo, M. Jiang, Y. Bai, et al., Nat. Mater. 23 (2024) 543–551.
doi: 10.1038/s41563-023-01792-x
Y. Huang, B. Shao, Y. Wang, et al., Energy Environ. Sci. 16 (2023) 1569–1580.
doi: 10.1039/d2ee04057c
Y. Yan, Y.-S. He, X. Zhao, et al., Nano Energy 84 (2021) 105935.
doi: 10.1016/j.nanoen.2021.105935
H. Zhong, D. Liu, X. Yuan, et al., Energy Fuels 38 (2024) 7693–7732.
doi: 10.1021/acs.energyfuels.4c00633
R. Okuno, M. Yamamoto, Y. Terauchi, et al., Energy Procedia 156 (2019) 183–186.
doi: 10.1016/j.egypro.2018.11.125
M. Shoji, E.J. Cheng, T. Kimura, et al., J. Phys. D: Appl. Phys. 52 (2019) 103001.
doi: 10.1088/1361-6463/aaf7e2
Q. Feng, X. Xie, B. Zheng, et al., ACS Appl. Energy Mater. 6 (2023) 2698–2706.
doi: 10.1021/acsaem.2c02693
R. Miyazaki, N. Ohta, T. Ohnishi, et al., J. Power Sources 329 (2016) 41–49.
doi: 10.1016/j.jpowsour.2016.08.070
Z. Zhang, Z. Sun, X. Han, et al., Energy Environ. Sci. 17 (2024) 1061–1072.
doi: 10.1039/D3EE03877G
K.S. Lee, Y.N. Lee, Y.S. Yoon, Electrochim. Acta 147 (2014) 232–240.
doi: 10.1016/j.electacta.2014.09.110
S. Poetke, F. Hippauf, A. Baasner, et al., Batteries Supercaps 4 (2021) 1323–1334.
doi: 10.1002/batt.202100055
K.S. Lee, S.H. Lee, S.P. Woo, et al., Thin Solid Films 564 (2014) 58–64.
doi: 10.1016/j.tsf.2014.04.094
R. Okuno, M. Yamamoto, A. Kato, et al., Electrochem. Commun. 138 (2022) 107288.
doi: 10.1016/j.elecom.2022.107288
J.E. Trevey, K.W. Rason, C.R. Stoldt, et al., Electrochem. Solid-State Lett. 13 (2010) A154.
doi: 10.1149/1.3479551
T.M. Higgins, S.H. Park, P.J. King, et al., ACS Nano 10 (2016) 3702–3713.
doi: 10.1021/acsnano.6b00218
Z. Wang, X. Shen, S. Chen, et al., Adv. Mater. 36 (2024) 2405025.
doi: 10.1002/adma.202405025
S. An, Y. Ma, S. Payandeh, et al., Adv. Energy Sustain. Res. 4 (2023) 2300092.
doi: 10.1002/aesr.202300092
Q. Cao, Z.T. Sun, K. Ye, et al., Energy Storage Mater. 67 (2024) 103246.
doi: 10.1016/j.ensm.2024.103246
F. Zhang, Y. Guo, L. Zhang, et al., eTransportation 15 (2023) 100220.
doi: 10.1016/j.etran.2022.100220
M. Yamamoto, Y. Terauchi, A. Sakuda, et al., J. Power Sources 473 (2020) 228595.
doi: 10.1016/j.jpowsour.2020.228595
D.H. Kim, H.A. Lee, Y.B. Song, et al., J. Power Sources 426 (2019) 143–150.
doi: 10.1016/j.jpowsour.2019.04.028
G.P. Pandey, S.A. Klankowski, Y. Li, et al., ACS Appl. Mater. Interfaces 7 (2015) 20909–20918.
doi: 10.1021/acsami.5b06444
D.H. Kim, D.Y. Oh, K.H. Park, et al., Nano Lett. 17 (2017) 3013–3020.
doi: 10.1021/acs.nanolett.7b00330
J. Lee, D. Jin, J.Y. Kim, et al., Adv. Energy Mater. 13 (2023) 2300172.
doi: 10.1002/aenm.202300172
Z. Fan, B. Ding, Z. Li, et al., eTransportation 18 (2023) 100277.
doi: 10.1016/j.etran.2023.100277
K. Nishikawa, J. Moon, K. Kanamura, J. Power Sources 302 (2016) 46–52.
doi: 10.1016/j.jpowsour.2015.10.014
J. Sun, X. Liu, P. Zheng, et al., J. Mater. Chem. A 12 (2024) 25747–25760.
doi: 10.1039/d4ta02532f
Y. Domi, H. Usui, K. Yamaguchi, et al., ACS Appl. Mater. Interfaces 11 (2019) 2950–2960.
doi: 10.1021/acsami.8b17123
F. Boorboor Ajdari, P. Asghari, A. Molaei Aghdam, et al., Adv. Funct. Mater. 34 (2024) 2314822.
doi: 10.1002/adfm.202314822
X. Zhang, H. Shi, P. Lv, et al., Energy Technol. 9 (2021) 2100400.
doi: 10.1002/ente.202100400
M.A. Rahman, G. Song, A.I. Bhatt, et al., Adv. Funct. Mater. 26 (2016) 647–678.
doi: 10.1002/adfm.201502959
T. Song, L. Hu, U. Paik, J. Phys. Chem. Lett. 5 (2014) 720–731.
doi: 10.1021/jz4027979
R. Teki, M.K. Datta, R. Krishnan, et al., Small 5 (2009) 2236–2242.
doi: 10.1002/smll.200900382
W.R. Liu, Z.Z. Guo, W.S. Young, et al., J. Power Sources 140 (2005) 139–144.
doi: 10.1016/j.jpowsour.2004.07.032
M. Ashuri, Q. He, L.L. Shaw, Nanoscale 8 (2016) 74–103.
doi: 10.1039/C5NR05116A
F. Wu, Y. Dong, Y. Su, et al., Small 19 (2023) 2301301.
doi: 10.1002/smll.202301301
J. Müller, P. Michalowski, A. Kwade, Batteries 9 (2023) 377.
doi: 10.3390/batteries9070377
N.A. Dunlap, S. Kim, J.J. Jeong, et al., Solid State Ionics 324 (2018) 207–217.
doi: 10.1016/j.ssi.2018.07.013
J.Y. Kim, S. Jung, S.H. Kang, et al., Adv. Energy Mater. 12 (2022) 2103108.
doi: 10.1002/aenm.202103108
Y. Li, Z. Zhang, P. Su, et al., Ionics (Kiel) 30 (2024) 3789–3798.
doi: 10.1007/s11581-024-05561-x
H. Kim, M. Seo, M.H. Park, et al., Angew. Chem. Int. Ed. 49 (2010) 2146–2149.
doi: 10.1002/anie.200906287
M. Yamamoto, Y. Terauchi, A. Sakuda, et al., J. Power Sources 402 (2018) 506–512.
doi: 10.1016/j.jpowsour.2018.09.070
T. Ohtomo, A. Hayashi, M. Tatsumisago, et al., J. Power Sources 233 (2013) 231–235.
doi: 10.1016/j.jpowsour.2013.01.090
F. Mizuno, A. Hayashi, K. Tadanaga, et al., Solid State Ionics 177 (2006) 2731–2735.
doi: 10.1016/j.ssi.2006.02.003
A. Sakuda, K. Kuratani, M. Yamamoto, et al., J. Electrochem. Soc. 164 (2017) A2474.
doi: 10.1149/2.0951712jes
M. Yamamoto, Y. Terauchi, A. Sakuda, et al., Sci. Rep. 8 (2018) 1212.
doi: 10.1038/s41598-018-19398-8
D.H.S. Tan, Y.T. Chen, H. Yang, et al., Science 373 (2021) 1494–1499.
doi: 10.1126/science.abg7217
X. Zhou, S. Chen, H. Zhou, et al., Microporous Mesoporous Mater. 268 (2018) 9–15.
doi: 10.1016/j.micromeso.2018.03.035
J. Wang, M. Zhou, G. Tan, et al., Nanoscale 7 (2015) 8023–8034.
doi: 10.1039/C5NR01209K
F. Wu, H. Wang, J. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 19639–19648.
doi: 10.1021/acsami.8b03000
S. Jiang, Z. Yang, Y. Liu, et al., ACS Appl. Energy Mater. 4 (2021) 8193–8200.
doi: 10.1021/acsaem.1c00374
M. Ge, Y. Tang, O.I. Malyi, et al., Small 16 (2020) 2002094.
doi: 10.1002/smll.202002094
J. Xie, X. Yang, S. Zhou, et al., ACS Nano 5 (2011) 9225–9231.
doi: 10.1021/nn203480h
N.S. Choi, Y. Yao, Y. Cui, et al., J. Mater. Chem. 21 (2011) 9825–9840.
doi: 10.1039/c0jm03842c
Q. Yang, N. Deng, Y. Zhao, et al., Chem. Eng. J. 451 (2023) 138532.
doi: 10.1016/j.cej.2022.138532
X. Chen, Q. Bi, M. Sajjad, et al., Nanomaterials 8 (2018) 285.
doi: 10.3390/nano8050285
J.E. Trevey, J. Wang, C.M. DeLuca, et al., Sens. Actuator. A 167 (2011) 139–145.
doi: 10.1016/j.sna.2011.02.015
A. Vlad, A.L.M. Reddy, A. Ajayan, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (2012) 15168–15173.
doi: 10.1073/pnas.1208638109
M. Yamamoto, M. Takatsu, R. Okuno, et al., Sci. Rep. 13 (2023) 17051.
doi: 10.1038/s41598-023-44070-1
M. Grandjean, M. Pichardo, Y. Biecher, et al., J. Power Sources 580 (2023) 233386.
doi: 10.1016/j.jpowsour.2023.233386
C. Chen, Q. Li, Y. Li, et al., ACS Appl. Mater. Interfaces 10 (2018) 2185–2190.
doi: 10.1021/acsami.7b16385
H. Huo, J. Sun, C. chen, et al., J. Power Sources 383 (2018) 150–156.
doi: 10.1016/j.jpowsour.2018.02.026
R. Miyazaki, N. Ohta, T. Ohnishi, et al., J. Power Sources 272 (2014) 541–545.
doi: 10.1016/j.jpowsour.2014.08.109
R. Okuno, M. Yamamoto, A. Kato, et al., J. Electrochem. Soc. 167 (2020) 140522.
doi: 10.1149/1945-7111/abc3ff
X.H. Liu, L. Zhong, S. Huang, et al., ACS Nano 6 (2012) 1522–1531.
doi: 10.1021/nn204476h
J. Sakabe, N. Ohta, T. Ohnishi, et al., Commun. Chem. 1 (2018) 24.
doi: 10.1038/s42004-018-0026-y
W. An, B. Gao, S. Mei, et al., Nat. Commun. 10 (2019) 1447.
doi: 10.1038/s41467-019-09510-5
M. Ge, Y. Lu, P. Ercius, et al., Nano Lett. 14 (2014) 261–268.
doi: 10.1021/nl403923s
H. Jia, X. Li, J. Song, et al., Nat. Commun. 11 (2020) 1474.
doi: 10.1038/s41467-020-15217-9
Z. Liu, Q. Yu, Y. Zhao, et al., Chem. Soc. Rev. 48 (2019) 285–309.
doi: 10.1039/c8cs00441b
M. Ashuri, Q. He, L.L. Shaw, J. Power Sources 559 (2023) 232660.
doi: 10.1016/j.jpowsour.2023.232660
W. Wu, Y. Kang, M. Wang, et al., J. Power Sources 464 (2020) 228244.
doi: 10.1016/j.jpowsour.2020.228244
C.C. Nguyen, H. Choi, S.W. Song, J. Electrochem. Soc. 160 (2013) A906.
doi: 10.1149/2.118306jes
J. Yang, Y. Takeda, N. Imanishi, et al., Solid State Ionics 152-153 (2002) 125–129.
doi: 10.1016/S0167-2738(02)00362-4
Q. Huang, J. Song, Y. Gao, et al., Nat. Commun. 10 (2019) 5586.
doi: 10.1038/s41467-019-13434-5
J.H. Yom, S.W. Hwang, S.M. Cho, et al., J. Power Sources 311 (2016) 159–166.
doi: 10.1016/j.jpowsour.2016.02.025
H. Li, H. Li, Z. Yang, et al., Small 17 (2021) 2102641.
doi: 10.1002/smll.202102641
F. Jiang, Y. Sun, K. Zhang, et al., Electrochim. Acta 398 (2021) 139315.
doi: 10.1016/j.electacta.2021.139315
B. Zhu, G. Liu, G. Lv, et al., Sci. Adv. 5 (2019) eaax0651.
doi: 10.1126/sciadv.aax0651
H. Luo, X. Zhang, Z. Wang, et al., ACS Appl. Mater. Interfaces 15 (2023) 4166–4174.
doi: 10.1021/acsami.2c21884
S.J. Lee, H.K. Baik, S.M. Lee, Electrochem. Commun. 5 (2003) 32–35.
doi: 10.1016/S1388-2481(02)00528-3
T.A. Yersak, S.B. Son, J.S. Cho, et al., J. Electrochem. Soc. 160 (2013) A1497.
doi: 10.1149/2.086309jes
J.M. Whiteley, J.W. Kim, D.M. Piper, et al., J. Electrochem. Soc. 163 (2016) A251.
doi: 10.1149/2.0701602jes
H. Oh, S. Lee, ECS Meeting Abstracts MA2018-01 (2018) 458.
doi: 10.1149/ma2018-01/3/458
X. Han, L. Gu, Z. Sun, et al., Energy Environ. Sci. 16 (2023) 5395–5408.
doi: 10.1039/d3ee01696j
S. Jing, Y. Lu, Y. Huang, et al., Adv. Mater. 36 (2024) 2312305.
Z. Cai, Z. Xu, N. Zhang, et al., Inorg. Chem. 63 (2024) 22542–22548.
doi: 10.1021/acs.inorgchem.4c03940
Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Int. J. Min. Met. Mater. 28 (2021) 1549–1564.
doi: 10.1007/s12613-021-2335-x
R.B. Cervera, N. Suzuki, T. Ohnishi, et al., Energy Environ. Sci. 7 (2014) 662–666.
doi: 10.1039/C3EE43306D
T. Famprikis, J. Galipaud, O. Clemens, et al., ACS Appl. Energy Mater. 2 (2019) 4782–4791.
doi: 10.1021/acsaem.9b00415
X. Han, Z. Zhang, H. Chen, et al., J. Mater. Chem. A 9 (2021) 3628–3636.
doi: 10.1039/d0ta10282b
Z. Xiao, C. Wang, L. Song, et al., J. Solid State Electrochem. 26 (2022) 1125–1136.
doi: 10.1007/s10008-022-05141-x
X. Xie, P. Xiao, L. Pang, et al., J. Alloys Compd. 931 (2023) 167473.
doi: 10.1016/j.jallcom.2022.167473
J. Gao, Y. Li, L. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 20635–20642.
doi: 10.1021/acsami.8b06442
Q. Yang, J. Zhou, G. Zhang, et al., J. Mater. Chem. A 5 (2017) 12144–12148.
doi: 10.1039/C7TA03060F
L. Zhang, C. Wang, Y. Dou, et al., Angew. Chem. Int. Ed. 58 (2019) 8824–8828.
doi: 10.1002/anie.201903709
M. Zhang, L. Zhao, D. Sun, et al., Appl. Surf. Sci. 626 (2023) 157254.
doi: 10.1016/j.apsusc.2023.157254
J. Yu, C. Zhang, W. Wu, et al., Appl. Surf. Sci. 548 (2021) 148944.
doi: 10.1016/j.apsusc.2021.148944
J. Kim, C. Kim, I. Jang, et al., J. Power Sources 510 (2021) 230425.
doi: 10.1016/j.jpowsour.2021.230425
Y. Chen, L. Li, J. Huang, et al., ACS Appl. Energy Mater. 7 (2024) 8658–8668.
doi: 10.1021/acsaem.4c01615
L. Hu, X. Yan, Z. Fu, et al., ACS Appl. Energy Mater. 5 (2022) 14353–14360.
doi: 10.1021/acsaem.2c02890
S. Chae, S.H. Choi, N. Kim, et al., Angew. Chem. Int. Ed. 59 (2020) 110–135.
doi: 10.1002/anie.201902085
M.K. Majeed, R. Iqbal, A. Hussain, et al., Crit. Rev. Solid State Mater. Sci. 49 (2024) 221–253.
doi: 10.1080/10408436.2023.2169658
P. Li, H. Kim, S.T. Myung, et al., Energy Storage Mater. 35 (2021) 550–576.
doi: 10.1016/j.ensm.2020.11.028
D. Zhang, P. Yu, Y. Zhang, et al., ACS Appl. Energy Mater. 7 (2024) 726–734.
doi: 10.1021/acsaem.3c02806
J. Pan, H. Peng, Y. Yan, et al., Energy Storage Mater. 43 (2021) 165–171.
doi: 10.1016/j.ensm.2021.09.001
D. Cao, X. Sun, Y. Li, et al., Adv. Mater. 34 (2022) 2200401.
doi: 10.1002/adma.202200401
B.T. Hang, T. Ohnishi, M. Osada, et al., J. Power Sources 195 (2010) 3323–3327.
doi: 10.1016/j.jpowsour.2009.11.136
X. Xu, Q. Sun, Y. Li, et al., Small 19 (2023) 2302934.
doi: 10.1002/smll.202302934
X. Zhan, M. Li, S. Li, et al., Energy Storage Mater. 61 (2023) 102875.
doi: 10.1016/j.ensm.2023.102875
M. Jiang, P. Mu, H. Zhang, et al., Nano Micro Lett. 14 (2022) 87.
doi: 10.1007/s40820-022-00833-5
C.C. Nguyen, T. Yoon, D.M. Seo, et al., ACS Appl. Mater. Interfaces 8 (2016) 12211–12220.
doi: 10.1021/acsami.6b03357
Z. Liu, C. Fang, X. He, et al., ACS Appl. Mater. Interfaces 13 (2021) 46518–46525.
doi: 10.1021/acsami.1c09607
S. Zhang, K. Liu, J. Xie, et al., ACS Appl. Mater. Interfaces 15 (2023) 6594–6602.
doi: 10.1021/acsami.2c16997
C.H. Jung, K.H. Kim, S.H. Hong, ACS Appl. Mater. Interfaces 11 (2019) 26753–26763.
doi: 10.1021/acsami.9b03866
Z. Chen, H. Zhang, T. Dong, et al., ACS Appl. Mater. Interfaces 12 (2020) 47164–47180.
doi: 10.1021/acsami.0c12519
J. Popovic-Neuber, ECS Meeting Abstracts MA2023-02 (2023) 917.
doi: 10.1149/ma2023-026917mtgabs
Y.M. Zhao, F.S. Yue, S.C. Li, et al., InfoMat 3 (2021) 460–501.
doi: 10.1002/inf2.12185
T.A. Yersak, J. Shin, Z. Wang, et al., ECS Electrochem. Lett. 4 (2015) A33.
doi: 10.1149/2.0011503eel
N.A. Dunlap, J. Kim, H. Guthery, et al., J. Electrochem. Soc. 167 (2020) 060522.
doi: 10.1149/1945-7111/ab84fc
H. Pan, L. Wang, Y. Shi, et al., Nat. Commun. 15 (2024) 2263.
doi: 10.1038/s41467-024-46472-9
D.M. Piper, T.A. Yersak, S.H. Lee, J. Electrochem. Soc. 160 (2013) A77.
doi: 10.1149/2.064301jes
J.M. Doux, Y. Yang, D.H.S. Tan, et al., J. Mater. Chem. A 8 (2020) 5049–5055.
doi: 10.1039/c9ta12889a
D. He, M. Yuan, B. Hu, et al., J. Phys. Conf. Ser. 2679 (2024) 012005.
doi: 10.1088/1742-6596/2679/1/012005
M.R. Bin Mamtaz, X. Michaud, H. Jo, et al., Int. J. Precis. Eng. Manuf. Green Tech. 10 (2023) 1093–1137.
doi: 10.1007/s40684-023-00519-2
J. Lee, T. Lee, K. Char, et al., Acc. Chem. Res. 54 (2021) 3390–3402.
doi: 10.1021/acs.accounts.1c00333
Y. Xiao, K. Turcheniuk, A. Narla, et al., Nat. Mater. 20 (2021) 984–990.
doi: 10.1038/s41563-021-00943-2
A. Tron, A. Paolella, A. Beutl, Batteries 9 (2023) 503.
doi: 10.3390/batteries9100503
Y. Nikodimos, W.N. Su, B.W. Taklu, et al., J. Power Sources 535 (2022) 231425.
doi: 10.1016/j.jpowsour.2022.231425
W. Liu, C. Yi, L. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 12931–12940.
doi: 10.1002/anie.202101537
P. Dong, Y. Cha, X. Zhang, et al., ACS Appl. Mater. Interfaces 16 (2024) 41018–41026.
doi: 10.1021/acsami.4c07879
W. Bao, C. Fang, D. Cheng, et al., Cell Rep. Phys. Sci. 2 (2021) 100597.
doi: 10.1016/j.xcrp.2021.100597
K.H. Kim, J. Shon, H. Jeong, et al., J. Power Sources 459 (2020) 228066.
doi: 10.1016/j.jpowsour.2020.228066
T. Jia, G. Zhong, Y. Lv, et al., Green Energy Environ. 8 (2023) 1325–1340.
doi: 10.1016/j.gee.2022.08.005
A.L. Michan, M. Leskes, C.P. Grey, Chem. Mater. 28 (2016) 385–398.
doi: 10.1021/acs.chemmater.5b04408
H.-G. Steinrück, C. Cao, G.M. Veith, et al., J. Chem. Phys. 152 (2020) 084702.
doi: 10.1063/1.5142643
K. Ogata, E. Salager, C.J. Kerr, et al., Nat. Commun. 5 (2014) 3217.
doi: 10.1038/ncomms4217
A.L. Michan, G. Divitini, A.J. Pell, et al., J. Am. Chem. Soc. 138 (2016) 7918–7931.
doi: 10.1021/jacs.6b02882
L. Jin, C. Shen, Q. Wu, et al., Adv. Sci. 8 (2021) 2005031.
doi: 10.1002/advs.202005031
Y. Li, L. Lv, R. Liang, et al., J. Mater. Chem. A 12 (2024) 20045–20055.
doi: 10.1039/d4ta02913e
H.J. Kim, S. Choi, S.J. Lee, et al., Nano Lett. 16 (2016) 282–288.
doi: 10.1021/acs.nanolett.5b03776
C. Yao, X. Li, Y. Deng, et al., Carbon 168 (2020) 392–403.
doi: 10.1016/j.carbon.2020.06.091
A. Veluchamy, C.H. Doh, D.H. Kim, et al., J. Power Sources 188 (2009) 574–577.
doi: 10.1016/j.jpowsour.2008.11.137
S.Y. Ham, E. Sebti, A. Cronk, et al., Nat. Commun. 15 (2024) 2991.
doi: 10.1038/s41467-024-47352-y
D. Cheng, T. Wynn, B. Lu, et al., Nat. Nanotechnol. 18 (2023) 1448–1455.
doi: 10.1038/s41565-023-01478-0
N. Zhao, W. Khokhar, Z. Bi, et al., Joule 3 (2019) 1190–1199.
doi: 10.1016/j.joule.2019.03.019
Y. Li, H. Xu, P.H. Chien, et al., Angew. Chem. Int. Ed. 57 (2018) 8587–8591.
doi: 10.1002/anie.201804114
Z. Deng, T.P. Mishra, E. Mahayoni, et al., Nat. Commun. 13 (2022) 4470.
doi: 10.1038/s41467-022-32190-7
D.H.S. Tan, E.A. Wu, H. Nguyen, et al., ACS Energy Lett. 4 (2019) 2418–2427.
doi: 10.1021/acsenergylett.9b01693
J. Lau, R.H. DeBlock, D.M. Butts, et al., Adv. Energy Mater. 8 (2018) 1800933.
doi: 10.1002/aenm.201800933
Z. Chen, T. Du, R. Christensen, et al., ACS Energy Lett. 8 (2023) 1969–1975.
doi: 10.1021/acsenergylett.3c00237
Q. Zhang, D. Cao, Y. Ma, et al., Adv. Mater. 31 (2019) 1901131.
doi: 10.1002/adma.201901131
P.V. Wright, Br. Polym. J. 7 (1975) 319–327.
doi: 10.1002/pi.4980070505
Z. Li, J. Fu, X. Zhou, et al., Adv. Sci. 10 (2023) 2201718.
doi: 10.1002/advs.202201718
Y. Zhao, L. Wang, Y. Zhou, et al., Adv. Sci. 8 (2021) 2003675.
doi: 10.1002/advs.202003675
D. Zhang, L. Li, X. Wu, et al., Front. Energy Res. 9 (2021) 726738.
doi: 10.3389/fenrg.2021.726738
S. Choudhury, R. Mangal, A. Agrawal, et al., Nat. Commun. 6 (2015) 10101.
doi: 10.1038/ncomms10101
X. Li, Y. Zheng, Y. Duan, et al., Nano Lett. 20 (2020) 6914–6921.
doi: 10.1021/acs.nanolett.0c03033
G. Zhou, X. Lin, J. Liu, et al., Energy Storage Mater. 34 (2021) 629–639.
doi: 10.1016/j.ensm.2020.10.012
C.V. Amanchukwu, Z. Yu, X. Kong, et al., J. Am. Chem. Soc. 142 (2020) 7393–7403.
doi: 10.1021/jacs.9b11056
X. Han, W. Zhou, M. Chen, et al., J. Energy Chem. 67 (2022) 727–735.
doi: 10.1016/j.jechem.2021.11.021
R. Wu, X. Du, T. Liu, et al., Adv. Energy Mater. 14 (2024) 2302899.
doi: 10.1002/aenm.202302899
J. Cui, L. Zhang, M. Wang, et al., J. Energy Storage 101 (2024) 113774.
doi: 10.1016/j.est.2024.113774
S. Wang, H. Xu, W. Li, et al., J. Am. Chem. Soc. 140 (2018) 250–257.
doi: 10.1021/jacs.7b09531
S. Asano, J.I. Hata, K. Watanabe, et al., ACS Appl. Mater. Interfaces 16 (2024) 7189–7199.
doi: 10.1021/acsami.3c16862
J. Sun, G. Chen, B. Wang, et al., Angew. Chem. Int. Ed. 63 (2024) e202406198.
doi: 10.1002/anie.202406198
X. Liu, Y. Li, J. Liu, et al., Adv. Mater. 36 (2024) 2401505.
doi: 10.1002/adma.202401505
X. Tang, C. Zhu, Y. Yang, et al., Chin. Chem. Lett. 35 (2024) 110014.
doi: 10.1016/j.cclet.2024.110014
J. Huang, J. He, Q. Liu, et al., Adv. Funct. Mater. 33 (2023) 2213811.
doi: 10.1002/adfm.202213811
L. Hu, Y. Ren, C. Wang, et al., Adv. Mater. 36 (2024) 2401909.
doi: 10.1002/adma.202401909
D. Liu, W. Zhu, Z. Feng, et al., Mater. Sci. Engin. B 213 (2016) 169–176.
doi: 10.1016/j.mseb.2016.03.005
H. Liu, Y. Liang, C. Wang, et al., Adv. Mater. 35 (2023) 2206013.
doi: 10.1002/adma.202206013
Z. Yang, B. Tang, D. Ren, et al., Mater. Today 80 (2024) 429–449.
doi: 10.1016/j.mattod.2024.08.011
Z. Wu, X. Li, C. Zheng, et al., Electrochem. Energy Rev. 6 (2023) 10.
doi: 10.1615/ihtc17.120-150
H. Xu, Y. Su, C. Zheng, et al., Chin. Chem. Lett. 35 (2024) 109173.
doi: 10.1016/j.cclet.2023.109173
Q. Sun, G. Zeng, X. Xu, et al., Adv. Energy Mater. 14 (2024) 2402048.
doi: 10.1002/aenm.202402048
Z. Karkar, M.S.E. Houache, C.H. Yim, et al., Batteries 10 (2024) 24.
doi: 10.3390/batteries10010024
A.J. Khan, L. Gao, Y. Zhang, et al., Next Mater. 7 (2025) 100371.
doi: 10.1016/j.nxmate.2024.100371
C. Bubulinca, N.E. Kazantseva, V. Pechancova, et al., Batteries 9 (2023) 157.
doi: 10.3390/batteries9030157
R. Pacios, A. Villaverde, M. Martínez-Ibañez, et al., Adv. Energy Mater. 13 (2023) 2301018.
doi: 10.1002/aenm.202301018
Jingxuan Liu , Shiqi Zhao , Xiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059
Yihong Li , Zhong Qiu , Lei Huang , Shenghui Shen , Ping Liu , Haomiao Zhang , Feng Cao , Xinping He , Jun Zhang , Yang Xia , Xinqi Liang , Chen Wang , Wangjun Wan , Yongqi Zhang , Minghua Chen , Wenkui Zhang , Hui Huang , Yongping Gan , Xinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Shunshun Jiang , Ji Zhang , Jing Wang , Shan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Biao Fang , Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
Zizhuo Liang , Fuming Du , Ning Zhao , Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108
Liang Ming , Dan Liu , Qiyue Luo , Chaochao Wei , Chen Liu , Ziling Jiang , Zhongkai Wu , Lin Li , Long Zhang , Shijie Cheng , Chuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387
Mufan Cao , Long Pan , Yaping Wang , Xianwei Sui , Xiong Xiong Liu , Shengfa Feng , Pengcheng Yuan , Min Gao , Jiacheng Liu , Song-Zhu Kure-Chu , Takehiko Hihara , Yang Zhou , Zheng-Ming Sun . Mechanical-durable and humidity-resistant dry-processed halide solid-state electrolyte films for all-solid-state battery. Chinese Chemical Letters, 2025, 36(6): 110391-. doi: 10.1016/j.cclet.2024.110391
Feibin Wei , Yongfang Rao , Yu Huang , Wei Wang , Hui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931
Xuejie Gao , Xinyang Chen , Ming Jiang , Hanyan Wu , Wenfeng Ren , Xiaofei Yang , Runcang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Chaochao Wei , Ru Wang , Zhongkai Wu , Qiyue Luo , Ziling Jiang , Liang Ming , Jie Yang , Liping Wang , Chuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717
Caixia Li , Yi Qiu , Yufeng Zhao , Wuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846
Dong Sui , Jiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417
Fengjun Deng , Tingyu Zhao , Xiaochen Zhang , Kaiyong Feng , Ze Liu , Youlin Xiang , Yingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897