Groups 3 and 4 single-site catalysts for olefin-polar monomer copolymerization
-
* Corresponding author.
E-mail address: lichk.bjhy@sinopec.com (C. Li).
Citation:
Chengkai Li, Guoqiang Fan, Gang Zheng, Rong Gao, Li Liu. Groups 3 and 4 single-site catalysts for olefin-polar monomer copolymerization[J]. Chinese Chemical Letters,
;2025, 36(9): 111297.
doi:
10.1016/j.cclet.2025.111297
A. Mishra, H.R. Patil, V. Gupta, New J. Chem. 45 (2021) 10577–10588.
doi: 10.1039/d1nj01195b
C. Chen, Nat. Rev. Chem. 2 (2018) 6–14.
doi: 10.1038/s41570-018-0003-0
M. Stürzel, S. Mihan, R. Mülhaupt, Chem. Rev. 116 (2015) 1398–1433.
M.C. Baier, M.A. Zuideveld, S. Mecking, Angew. Chem. Int. Ed. 53 (2014) 9722–9744.
doi: 10.1002/anie.201400799
H. Makio, H. Terao, A. Iwashita, T. Fujita, Chem. Rev. 111 (2011) 2363–2449.
doi: 10.1021/cr100294r
T.C. Chung, Prog. Polym. Sci. 27 (2002) 39–85.
doi: 10.1016/S0079-6700(01)00038-7
Y. Ye, P. Li, Y. Shangguan, et al., Chin. Chem. Lett. 25 (2014) 596–600.
doi: 10.1016/j.cclet.2014.01.001
P.D. Goringa, C. Mortonb, P. Scott, Dalton Trans. 48 (2019) 3521–3530.
doi: 10.1039/C9DT00087A
J. Dong, Y. Hu, Coord. Chem. Rev. 250 (2006) 47–65.
doi: 10.1016/j.ccr.2005.05.008
C. Tan, M. Chen, C. Zou, C. Chen, CCS Chem. 6 (2024) 882–897.
doi: 10.31635/ccschem.023.202303322
W. Ullah Khan, H. Mazhar, F. Shehzad, M.A. Al Harthi, Chem. Rec. 23 (2023) e202200243.
doi: 10.1002/tcr.202200243
C. Tan, C. Zou, C. Chen, Macromolecules 55 (2022) 1910–1922.
doi: 10.1021/acs.macromol.2c00058
S.L.J. Luckham, K. Nozaki, Acc. Chem. Res. 54 (2020) 344–355.
A. Keyes, H.E. Basbug Alhan, E. Ordonez, et al., Angew. Chem. Int. Ed. 58 (2019) 12370–12391.
doi: 10.1002/anie.201900650
N.M.G. Franssen, J.N.H. Reek, B. de Bruin, Chem. Soc. Rev. 42 (2013) 5809–5832.
doi: 10.1039/c3cs60032g
A. Nakamura, S. Ito, K. Nozaki, Chem. Rev. 109 (2009) 5215–5244.
doi: 10.1021/cr900079r
M.J. Yanjarappa, S. Sivaram, Prog. Polym. Sci. 27 (2002) 1347–1398.
doi: 10.1016/S0079-6700(02)00011-4
L.S. Boffa, B.M. Novak, Chem. Rev. 100 (2000) 1479–1493.
doi: 10.1021/cr990251u
L. Jasinska-Walc, M. Bouyahyi, R. Duchateau, Acc. Chem. Res. 55 (2022) 1985–1996.
doi: 10.1021/acs.accounts.2c00195
T.C.M. Chung, Macromolecules 46 (2013) 6671–6698.
doi: 10.1021/ma401244t
X. Hu, X. Kang, Y. Zhang, Z. Jian, CCS Chem. 4 (2022) 1680–1694.
doi: 10.31635/ccschem.021.202100895
M. Ghiass, R.A. Hutchinson, Polym. React. Eng. 11 (2003) 989–1015.
doi: 10.1081/PRE-120026882
P. Ehrlich, G.A. Mortimer, Fortschritte der Hochpolymeren-forschung. Advances in Polymer Science, Springer, Berlin, Heidelberg, 1970, pp. 386–448.
Y. Gao, T.J. Marks, Sci. Bull. 65 (2020) 605–606.
doi: 10.1016/j.scib.2020.01.010
N.K. Boaen, M.A. Hillmyer, Chem. Soc. Rev. 34 (2005) 267–275.
doi: 10.1039/b311405h
A. Schöbel, M. Winkenstette, T.M.J. Anselment, B. Rieger, Polym. Scie. : A Compr. Ref., 2012, pp. 779–823.
B.P. Carrow, K. Nozaki, Macromolecules 47 (2014) 2541–2555.
doi: 10.1021/ma500034g
Y. Wang, J. Lai, Q. Gou, et al., Coord. Chem. Rev. 522 (2025) 216195.
doi: 10.1016/j.ccr.2024.216195
Y. Wang, J. Lai, R. Gao, et al., Polymers 16 (2024) 1676.
doi: 10.3390/polym16121676
H. He, W. Wang, W. Pang, C. Zou, D. Peng, Chin. Chem. Lett. 35 (2024) 109534.
doi: 10.1016/j.cclet.2024.109534
Z. Song, S. Wang, R. Gao, et al., Polymers 15 (2023) 4343.
doi: 10.3390/polym15224343
C. Hong, Z. Wang, H. Jiang, et al., Chin. Chem. Lett. 34 (2023) 107918.
doi: 10.1016/j.cclet.2022.107918
R. Zhang, R. Gao, Q. Gou, J. Lai, X. Li, Polymers (Basel) 14 (2022) 3809.
doi: 10.3390/polym14183809
Q. Wang, Z. Zhang, C. Zou, C. Chen, Chin. Chem. Lett. 33 (2022) 4363–4366.
doi: 10.1016/j.cclet.2021.12.036
H. Mu, G. Zhou, X. Hu, Z. Jian, Coord. Chem. Rev. 435 (2021) 213802.
doi: 10.1016/j.ccr.2021.213802
C. Tan, C. Chen, Angew. Chem. Int. Ed. 58 (2019) 7192–7200.
doi: 10.1002/anie.201814634
Z. Chen, M. Brookhart, Acc. Chem. Res. 51 (2018) 1831–1839.
doi: 10.1021/acs.accounts.8b00225
L. Guo, W. Liu, C. Chen, Mater. Chem. Front. 1 (2017) 2487–2494.
doi: 10.1039/C7QM00321H
H. Mu, L. Pan, D. Song, Y. Li, Chem. Rev. 115 (2015) 12091–12137.
doi: 10.1021/cr500370f
L. Guo, S. Dai, X. Sui, C. Chen, ACS Catal. 6 (2015) 428–441.
doi: 10.1109/SmartGridComm.2015.7436338
L. Guo, C. Chen, Sci. China Chem. 58 (2015) 1663–1673.
doi: 10.1007/s11426-015-5433-7
Z. Dong, Z. Ye, Polym. Chem. 3 (2012) 286–301.
doi: 10.1039/C1PY00368B
C. Li, g. Fan, G. Zheng, R. Gao, L. Liu, Polymers 16 (2024) 2717.
doi: 10.3390/polym16192717
K. Kulajanpeng, N. Sheibat-Othman, W. Tanthapanichakoon, T. Mckenna, Can. J. Chem. Eng. 100 (2022) 2505–2545.
doi: 10.1002/cjce.24471
P.M. Trivedi, V.K. Gupta, J. Polym. Res. 28 (2021) 45.
doi: 10.1007/s10965-021-02412-5
J. Kumawat, V.K. Gupta, Polym. Chem. 11 (2020) 6107–6128.
doi: 10.1039/d0py00753f
D. Sauter, M. Taoufik, C. Boisson, Polymers 9 (2017) 185.
doi: 10.3390/polym9060185
K. Soga, T. Shiono, Prog. Polym. Sci. 22 (1997) 1503–1546.
doi: 10.1016/S0079-6700(97)00003-8
J. Chen, Y. Gao, T.J. Marks, Angew. Chem. Int. Ed. 59 (2020) 14726–14735.
doi: 10.1002/anie.202000060
H. Mu, Z. Jian, Org. Mater. 4 (2022) 178–189.
doi: 10.1055/a-1945-0777
W. Zhao, B. Wang, B. Dong, et al., Organometallics 39 (2020) 3983–3991.
doi: 10.1021/acs.organomet.0c00563
S. Li, D. Liu, Z. Wang, D. Cui, ACS Catal. 8 (2018) 6086–6093.
doi: 10.1021/acscatal.8b00885
Y. Pan, A. Zhao, Y. Li, et al., Dalton Trans. 47 (2018) 13815–13823.
doi: 10.1039/c8dt02130a
S. Arndt, K. Beckerle, K.C. Hultzsch, et al., J. Mol. Catal. A: Chem. 190 (2002) 215–223.
doi: 10.1016/S1381-1169(02)00237-6
A. Yamamoto, M. Nishiura, J. Oyamada, H. Koshino, Z. Hou, Macromolecules 49 (2016) 2458–2466.
doi: 10.1021/acs.macromol.6b00083
X. Shi, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 55 (2016) 14812–14817.
doi: 10.1002/anie.201609065
X. Shi, M. Nishiura, Z. Hou, J. Am. Chem. Soc. 138 (2016) 6147–6150.
doi: 10.1021/jacs.6b03859
M. Nishiura, F. Guo, Z. Hou, Acc. Chem. Res. 48 (2015) 2209–2220.
doi: 10.1021/acs.accounts.5b00219
D. Liu, C. Yao, R. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 5205–5209.
doi: 10.1002/anie.201412166
M. Fustier, X.F. Le Goff, M. Lutz, J.C. Slootweg, N. Mézailles, Organometallics 34 (2014) 63–72.
M. Fustier, X.F. Le Goff, P.L. Floch, N. Me´zailles, J. Am. Chem. Soc. 132 (2010) 13108–13110.
doi: 10.1021/ja103220s
C. Wang, G. Luo, M. Nishiura, et al., Sci. Adv. 3 (2017) e1701011.
doi: 10.1126/sciadv.1701011
H. Wang, Y. Yang, M. Nishiura, et al., J. Am. Chem. Soc. 141 (2019) 3249–3257.
doi: 10.1021/jacs.8b13316
Y. Yang, H. Wang, L. Huang, et al., Angew. Chem. Int. Ed. 60 (2021) 26192–26198.
doi: 10.1002/anie.202111161
L. Huang, Y. Yang, J. Shao, et al., J. Am. Chem. Soc. 146 (2024) 2718–2727.
doi: 10.1021/jacs.3c12342
H. Zhang, L. Huang, X. Wu, et al., Macromolecules 57 (2024) 7219–7226.
doi: 10.1021/acs.macromol.4c00819
N. Nakata, T. Watanabe, T. Toda, A. Ishii, Macromol. Rapid Commun. 37 (2016) 1820–1824.
doi: 10.1002/marc.201600351
K.E. Crawford, L.R. Sita, ACS Macro Lett. 4 (2015) 921–925.
doi: 10.1021/acsmacrolett.5b00447
K.E. Crawford, L.R. Sita, ACS Macro Lett. 3 (2014) 506–509.
doi: 10.1021/mz500126r
F. Guo, M. Nishiura, Y. Li, Z. Hou, Chem. Asian J. 8 (2013) 2471–2482.
doi: 10.1002/asia.201300599
K.E. Crawford, L.R. Sita, J. Am. Chem. Soc. 135 (2013) 8778–8781.
doi: 10.1021/ja402262x
X. Shi, Y. Wang, J. Liu, et al., Macromolecules 44 (2011) 1062–1065.
doi: 10.1021/ma1023268
F. Guo, M. Nishiura, H. Koshino, Z. Hou, Macromolecules 44 (2011) 2400–2403.
doi: 10.1021/ma200441w
H. Wang, Y. Zhao, M. Nishiura, et al., J. Am. Chem. Soc. 141 (2019) 12624–12633.
doi: 10.1021/jacs.9b04275
H. Wang, H. Liu, Z. Cao, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 11299–11305.
doi: 10.1073/pnas.2000001117
S. Kuo, H. Xu, C. Huang, F. Chang, J. Polym. Sci. Part B: Polym. Phys. 40 (2002) 2313–2323.
doi: 10.1002/polb.10292
Y. Jiang, Z. Zhang, S. Li, D. Cui, Angew. Chem. Int. Ed. 61 (2022) e202112966.
doi: 10.1002/anie.202112966
Y. Zhong, B. Wang, D. Cui, Polym. Chem. 12 (2021) 4576–4582.
doi: 10.1039/d1py00840d
B. Liu, K. Qiao, J. Fang, et al., Angew. Chem. Int. Ed. 57 (2018) 14896–14901.
doi: 10.1002/anie.201808836
T. Wang, C. Wu, X. Ji, D. Cui, Angew. Chem. Int. Ed. 60 (2021) 25735–25740.
doi: 10.1002/anie.202111184
X. Mu, L. Han, X. Leng, Y. Li, Polymer 241 (2022) 124548.
doi: 10.1016/j.polymer.2022.124548
S. Dong, X. Duan, T. Nan, et al., Macromolecules 56 (2023) 8912–8919.
doi: 10.1021/acs.macromol.3c01164
Y. Jiang, Z. Zhang, H. Jiang, et al., Macromolecules 56 (2023) 1547–1553.
doi: 10.1021/acs.macromol.2c02155
M. Zhang, J. Liu, Y. Wang, et al., J. Mater. Chem. A 3 (2015) 12284–12296.
doi: 10.1039/C5TA01420D
X. Wang, Y. Li, H. Mu, L. Pan, Y. Li, Polym. Chem. 6 (2015) 1150–1158.
doi: 10.1039/C4PY01350F
N. Kawahara, J. Saito, S. Matsuo, et al., Polym. Bull. 59 (2007) 177–183.
doi: 10.1007/s00289-007-0759-8
C. Lewis, S. Bunyung, S. Kiatkamjornwong, J. Appl. Polym. Sci. 89 (2002) 837–847.
L.S. Boff, B.M. Novak, Chem. Rev. 100 (2000) 1479–1493.
doi: 10.1021/cr990251u
S. Bruzaud, H. Cramail, L. Duvignac, A. Deffieux, Macromol. Chem. Phys. 198 (1997) 291–303.
doi: 10.1002/macp.1997.021980206
M. Galimberti, U. Giannini, E. Albizzati, S. Caldari, L. Abis, J. Mol. Catal. A: Chem. 101 (1995) 1–10.
doi: 10.1016/1381-1169(95)00046-1
Y. Wang, L. Jiang, X. Ren, F. Guo, Z. Hou, J. Polym Sci. 59 (2021) 2324–2333.
doi: 10.1002/pol.20210488
J.P. McInnis, M. Delferro, T.J. Marks, Acc. Chem. Res. 47 (2014) 2545–2557.
doi: 10.1021/ar5001633
B.A. Rodriguez, M. Delferro, T.J. Marks, J. Am. Chem. Soc. 135 (2013) 17651–17651.
doi: 10.1021/ja409590r
M.P. Weberski, C. Chen, M. Delferro, T.J. Marks, Chem. Eur. J. 18 (2012) 10715–10732.
doi: 10.1002/chem.201200713
M. Delferro, T.J. Marks, Chem. Rev. 111 (2011) 2450–2485.
doi: 10.1021/cr1003634
L.A. Williams, T.J. Marks, Organometallics 28 (2009) 2053–2061.
doi: 10.1021/om801106c
S.B. Amin, T.J. Marks, J. Am. Chem. Soc. 129 (2007) 2938–2953.
doi: 10.1021/ja0675292
J. Chen, Y. Gao, B. Wang, T.L. Lohr, T.J. Marks, Angew. Chem. Int. Ed. 56 (2017) 15964–15968.
doi: 10.1002/anie.201708797
Z. Zhang, Y. Jiang, R. Lei, et al., Macromolecules 56 (2023) 2476–2483.
doi: 10.1021/acs.macromol.2c02337
H. Terao, S. Ishii, M. Mitani, H. Tanaka, T. Fujita, J. Am. Chem. Soc. 130 (2008) 17636–17637.
doi: 10.1021/ja8060479
N. Guo, C.L. Stern, T.J. Marks, J. Am. Chem. Soc. 130 (2008) 2246–2261.
doi: 10.1021/ja076407m
A. Evans, O. Casale, L.J. Morris, Z.R. Turner, D. O'Hare, Macromolecules 57 (2024) 10778–10791.
doi: 10.1021/acs.macromol.4c02102
Y. Zhu, S. Li, H. Liang, X. Xie, F. Zhu, RSC Adv. 9 (2019) 26582–26587.
doi: 10.1039/c9ra06271h
S. Kitphaitun, Q. Yan, K. Nomura, Angew. Chem. Int. Ed. 59 (2020) 23072–23076.
doi: 10.1002/anie.202010559
O.A. Ajala, M. Ono, Y. Nakayama, R. Tanaka, T. Shiono, Polymers 16 (2024) 236.
doi: 10.3390/polym16020236
C. Wei, L. Guo, C. Zhu, C. Cui, Angew. Chem. Int. Ed. 64 (2025) e202414464.
doi: 10.1002/anie.202414464
Y. Na, D. Zhang, C. Chen, Polym. Chem. 8 (2017) 2405–2409.
doi: 10.1039/C7PY00127D
Z. Shi, F. Guo, Y. Li, Z. Hou, J. Polym. Sci. Part A: Polym. Chem. 53 (2014) 5–9.
J. Xu, G. Chen, R. Yan, et al., Macromolecules 44 (2011) 3730–3738.
doi: 10.1021/ma200320a
J. Chen, A. Motta, B. Wang, Y. Gao, T.J. Marks, Angew. Chem. Int. Ed. 58 (2019) 7030–7034.
doi: 10.1002/anie.201902042
M. Huang, J. Chen, B. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 20522–20528.
doi: 10.1002/anie.202005635
R. Vaquero-Bermejo, E. Blázquez-Blázquez, M. Hoyos, J.M. Gómez-Elvira, Mater. Today Commun. 31 (2022) 103469.
doi: 10.1016/j.mtcomm.2022.103469
D. Plaza-González, E. Blázquez-Blázquez, J.M. Gómez-Elvira, M. Hoyos, ACS Appl. Polym. Mater. 5 (2023) 7958–7967.
doi: 10.1021/acsapm.3c01208
Y. Zhao, Y. Zhang, L. Cui, Z. Jian, ACS Macro Lett. 12 (2023) 395–400.
doi: 10.1021/acsmacrolett.3c00043
C.R. López-Barrón, N.S. Lambic, J.A. Throckmorton, et al., Macromolecules 55 (2022) 284–296.
doi: 10.1021/acs.macromol.1c02244
M. Bouyahyi, L. Jasinska-Walc, R. Duchateau, et al., Macromolecules 55 (2022) 776–787.
doi: 10.1021/acs.macromol.1c02220
G. Zhang, H. Li, M. Antensteiner, T.C.M. Chung, Macromolecules 48 (2015) 2925–2934.
doi: 10.1021/acs.macromol.5b00439
N. Blake, Z.R. Turner, J.C. Buffet, D. O'Hare, Polym. Chem. 14 (2023) 3175–3185.
doi: 10.1039/d3py00143a
C. He, X. Pan, Macromolecules 53 (2020) 3700–3708.
doi: 10.1021/acs.macromol.0c00665
T. Nishikawa, M. Ouchi, Angew. Chem. Int. Ed. 58 (2019) 12435–12439.
doi: 10.1002/anie.201905135
T. Kida, R. Tanaka, K. Nitta, T. Shiono, Polym. Chem. 10 (2019) 5578–5583.
doi: 10.1039/c9py01186b
R. Tanaka, N. Tonoko, S. Kihara, Y. Nakayama, T. Shiono, Polym. Chem. 9 (2018) 3774–3779.
doi: 10.1039/c8py00519b
R. Tanaka, T. Ikeda, Y. Nakayama, T. Shiono, Polymer 56 (2015) 218–222.
doi: 10.1016/j.polymer.2014.11.059
T.C.M. Chung, Macromol. React. Eng. 8 (2013) 69–80.
T.C. Chung, D. Rhubright, Macromolecules 24 (1991) 970–972.
doi: 10.1021/ma00004a026
R. Tanaka, H. Fujii, T. Kida, Y. Nakayama, T. Shiono, Macromolecules 54 (2021) 1267–1272.
doi: 10.1021/acs.macromol.0c02686
Y. Li, D. Song, L. Pan, Z. Ma, Y. Li, Polym. Chem. 10 (2019) 6368–6378.
doi: 10.1039/c9py01225g
X.Y. Wang, Y.Y. Long, Y.X. Wang, Y.S. Li, J. Polym. Sci. Part A: Polym. Chem. 52 (2014) 3421–3428.
doi: 10.1002/pola.27409
X. Wang, Y. Wang, X. Shi, et al., Macromolecules 47 (2014) 552–559.
doi: 10.1021/ma4022696
B. Wang, Y. Long, Y. Li, Y. Men, Y. Li, Polymer 61 (2015) 108–114.
doi: 10.1016/j.polymer.2015.01.076
D. Zhang, L. Pan, Y. Li, B. Wang, Y. Li, Macromolecules 50 (2017) 2276–2283.
doi: 10.1021/acs.macromol.6b02550
R. Shang, H. Gao, F. Luo, et al., Macromolecules 52 (2019) 9280–9290.
doi: 10.1021/acs.macromol.9b00757
R. Shang, H. Gao, Y. Li, et al., Acta Polym. Sin. 50 (2019) 1187–1195.
Z. Li, S. Shi, F. Yang, et al., ACS Omega 5 (2020) 13148–13157.
doi: 10.1021/acsomega.0c01165
G. Zhou, H. Mu, X. Ma, X. Kang, Z. Jian, CCS Chem. 5 (2023) 2638–2649.
doi: 10.31635/ccschem.023.202202621
Xinyu Liu , Jialin Yang , Zonglin He , Jiaoyan Ai , Lina Song , Baohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236
Hailong He , Wenbing Wang , Wenmin Pang , Chen Zou , Dan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534
Jinjin Yang , Chuanhui Zhu , Shuang Zhao , Tao Xia , Pengfei Tan , Yutian Zhang , Mei-Huan Zhao , Yijie Zeng , Man-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Hanghang Zhao , Wenbo Qi , Xin Tan , Xing Xu , Fengmin Song , Xianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898
Ying Chen , Lun Li , Guohao Han , Ren Liu , Guanghui An , Yi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458
Yuan CONG , Yunhao WANG , Wanping LI , Zhicheng ZHANG , Shuo LIU , Huiyuan GUO , Hongyu YUAN , Zhiping ZHOU . Construction and photocatalytic properties toward rhodamine B of CdS/Fe3O4 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2241-2249. doi: 10.11862/CJIC.20240219
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
Jimin HOU , Mengyang LI , Chunhua GONG , Shaozhuang ZHANG , Caihong ZHAN , Hao XU , Jingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348
Chenxi Shang , Boxuan Lu , Chongbei Wu , Shuqing Zhou , Luyan Shi , Tayirjan Taylor Isimjan , Xiulin Yang . Inducing electronic rearrangement through Co3B-Mo2B5 catalysts: Efficient dual-function catalysis for NaBH4 hydrolysis and 4-nitrophenol reduction. Chinese Chemical Letters, 2025, 36(9): 111152-. doi: 10.1016/j.cclet.2025.111152
Tianjun Ni , Hui Zhang , Liping Zhou , Roujie Ma , Yanyu Wang , Zhijun Yang , Dan Luo , Nithima Khaorapapong , Xingtao Xu , Yusuke Yamauchi , Dong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Xinxiu Yan , Xizhe Huang , Yangyang Liu , Weishang Jia , Hualin Chen , Qi Yao , Tao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426
Kunyao Peng , Xianbin Wang , Xingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274
Junchen Peng , Xue Yin , Dandan Dong , Zhongyuan Guo , Qinqin Wang , Minmin Liu , Fei He , Bin Dai , Chaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508