Citation: Zheng Liu, Yuqing Bian, Graham Dawson, Jiawei Zhu, Kai Dai. Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production[J]. Chinese Chemical Letters, ;2025, 36(9): 111272. doi: 10.1016/j.cclet.2025.111272 shu

Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production

    * Corresponding authors.
    E-mail addresses: zjw1584038799@mail.ustc.edu.cn (J. Zhu), daikai940@chnu.edu.cn (K. Dai).
    1 These authors contributed equally to this work.
  • Received Date: 27 January 2025
    Revised Date: 25 April 2025
    Accepted Date: 27 April 2025
    Available Online: 28 April 2025

Figures(4)

  • Photocatalytic hydrogen peroxide (H2O2) production (PHP) offers significant advantages to traditional production methods, including solar energy utilization, mild reaction conditions, environmental friendliness, pollution-free processes, sustainability, and high selectivity. However, despite its potential as a green and sustainable technology, photocatalytic H2O2 production (PHP) is constrained by limited visible light absorption by photocatalysts and the rapid recombination of photogenerated charge carriers, which reduce yield and efficiency. In this study, we synthesized an organic amine constrained Zn0.5Cd0.5S-DETA/g-C3N4 (ZCS-D/CN) S-scheme heterojunction via a hydrothermal method to enhance PHP. Anchoring ZCS-D on the surface of CN and forming an S-scheme heterojunction effectively prevented ZCS-D agglomeration, modulated the band structure of CN, and enhanced the migration and redox capabilities of photogenerated charge carriers. The optimized heterojunction (ZCS-D/CN) achieved a H2O2 yield of 5124 µmol g-1 h-1 in pure H2O, significantly outperforming pure CN (24 µmol g-1 h-1) and ZCS-D (4012 µmol g-1 h-1). These results demonstrate that ZCS-D/CN S-scheme heterojunction holds substantial potential for photocatalytic applications, particularly in the efficient production of H2O2.
  • 加载中
    1. [1]

      Q. Xu, L. Zhang, B. Cheng, et al., Chem 6 (2020) 1543–1559.  doi: 10.1016/j.chempr.2020.06.010

    2. [2]

      X. Xu, C. Shao, J. Zhang, et al., Acta Phys. Chim. Sin. 40 (2023) 2309031.

    3. [3]

      M. Sayed, F. Xu, P. Kuang, et al., Nat. Commun. 12 (2021) 4936.  doi: 10.1038/s41467-021-25007-6

    4. [4]

      L. Liu, Z. Wang, J. Zhang, et al., Adv. Mater. 35 (2023) 2300643.  doi: 10.1002/adma.202300643

    5. [5]

      C. Nie, X. Wang, P. Lu, et al., J. Mater. Sci. Technol. 169 (2024) 182–198.  doi: 10.1016/j.jmst.2023.06.011

    6. [6]

      J. Hua, Z. Dai, K. Cheng, et al., Nano Lett. 24 (2024) 14363–14372.  doi: 10.1021/acs.nanolett.4c03978

    7. [7]

      F.N. Habarugira, D. Yao, W. Miao, et al., Chin. Chem. Lett. 35 (2024) 109886.  doi: 10.1016/j.cclet.2024.109886

    8. [8]

      S. Ding, J. Duan, S. Chen, EcoEnergy 2 (2024) 45–82.  doi: 10.1002/ece2.26

    9. [9]

      B. Liu, J. Cai, J. Zhang, et al., Chin. J. Catal. 51 (2023) 204–215.  doi: 10.1016/S1872-2067(23)64466-3

    10. [10]

      X. Wang, C. Chen, Q. Wang, et al., Chin. J. Struct. Chem. 43 (2024) 100473.

    11. [11]

      H. Lv, Z. Li, P. Yin, et al., Chin. Chem. Lett. 36 (2025) 110457.  doi: 10.1016/j.cclet.2024.110457

    12. [12]

      K. Meng, J. Zhang, B. Cheng, et al., Adv. Mater. 36 (2024) 2406460.  doi: 10.1002/adma.202406460

    13. [13]

      B. Zhu, J. Liu, J. Sun, et al., J. Mater. Sci. Technol. 162 (2023) 90–98.  doi: 10.1016/j.jmst.2023.03.054

    14. [14]

      K. Huang, G. Liang, S. Sun, et al., J. Mater. Sci. Technol. 193 (2024) 98–106.  doi: 10.1016/j.jmst.2024.01.034

    15. [15]

      B. He, Z. Wang, P. Xiao, et al., Adv. Mater. 34 (2022) 2203225.  doi: 10.1002/adma.202203225

    16. [16]

      Z. Wang, Y. Gao, T. Wang, et al., Chin. Chem. Lett. 36 (2025) 110602.  doi: 10.1016/j.cclet.2024.110602

    17. [17]

      Z. Jiang, Q. Long, B. Cheng, et al., J. Mater. Sci. Technol. 162 (2023) 1–10.  doi: 10.1016/j.jmst.2023.03.045

    18. [18]

      M. Gao, Z. Sun, Y. Gong, et al., J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 39–48.

    19. [19]

      Y. Cui, J. Zhang, H. Chu, et al., Acta Phys. Chim. Sin. 40 (2024) 2405016.  doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Q. Wang, Z. Miao, Y. Zhang, et al., ACS Catal. 12 (2022) 4016–4025.  doi: 10.1021/acscatal.1c05553

    21. [21]

      E. Cui, Y. Lu, J. Jiang, et al., Chin. J. Catal. 59 (2024) 126–136.  doi: 10.1016/S1872-2067(23)64630-3

    22. [22]

      P. Su, J. Yu, P. Deng, et al., J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 123–131.

    23. [23]

      R. Gao, R. Shen, C. Huang, et al., Angew. Chem. Int. Ed. 64 (2024) e202414229.

    24. [24]

      C. Bie, Z. Meng, B. He, et al., J. Mater. Sci. Technol. 173 (2024) 11–19.  doi: 10.1016/j.jmst.2023.07.019

    25. [25]

      S. Yan, Y. Li, X. Yang, et al., Adv. Mater. 36 (2023) 2307967.

    26. [26]

      H. Ding, R. Shen, K. Huang, et al., Adv. Funct. Mater. 34 (2024) 2400065.

    27. [27]

      H. Zhang, C. Shao, Z. Wang, et al., J. Mater. Sci. Technol. 195 (2024) 146–154.

    28. [28]

      T. Yang, J. Wang, Z. Wang, et al., Chin. J. Catal. 58 (2024) 157–167.

    29. [29]

      C. Yang, Q. Rong, F. Shi, et al., Chin. Chem. Lett. 35 (2024) 109767.

    30. [30]

      Y. Tang, W. Wang, J. Ran, et al., Energy Environ. Sci. 17 (2024) 6482–6498.

    31. [31]

      Y. Bian, H. He, G. Dawson, et al., Sci. China Mater. 67 (2024) 514–523.

    32. [32]

      Z. Zhou, H. Yao, Y. Wu, et al., Acta Phys. Chim. Sin. 40 (2024) 2312010.

    33. [33]

      C. Yang, X. Li, M. Li, et al., Chin. J. Catal. 56 (2024) 88–103.

    34. [34]

      C. Cheng, B. He, J. Fan, et al., Adv. Mater. 33 (2021) 2100317.

    35. [35]

      L. Xiao, W. Ren, S. Shen, et al., Acta Phys. Chim. Sin. 40 (2024) 2308036.

    36. [36]

      C. Cheng, J. Yu, D. Xu, et al., Nat. Commun. 15 (2024) 1313.

    37. [37]

      C. Yang, B. Cheng, J. Xu, et al., EnergyChem 6 (2024) 100116.

    38. [38]

      S. Cao, B. Zhong, C. Bie, et al., Acta Phys. Chim. Sin. 40 (2024) 2307016.

    39. [39]

      Z. Jiang, B. Cheng, L. Zhang, et al., Chin. J. Catal. 52 (2023) 32–49.

    40. [40]

      J. Cai, B. Liu, S. Zhang, et al., J. Mater. Sci. Technol. 197 (2024) 183–193.

    41. [41]

      Z. Miao, Q. Wang, Y. Zhang, et al., Appl. Catal. B: Environ. 301 (2022) 120802.

    42. [42]

      M. Cai, Y. Wei, Y. Li, et al., EcoEnergy 1 (2023) 248–295.

    43. [43]

      X. Deng, J. Zhang, K. Qi, et al., Nat. Commun. 15 (2024) 4807.

    44. [44]

      J. Wang, Z. Wang, J. Zhang, et al., ACS Nano 18 (2024) 20740–20750.

    45. [45]

      C. Wang, C. You, K. Rong, et al., Acta Phys. Chim. Sin. 40 (2024) 2307045.

    46. [46]

      Z. Zhao, Z. Wang, J. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2214470.

    47. [47]

      D. Chen, Z. Wang, J. Fu, et al., Sci. China Mater. 67 (2024) 541–549.

    48. [48]

      X. Gao, D. Zeng, J. Yang, et al., Chin. J. Catal. 42 (2021) 1137–1146.

    49. [49]

      H. Jiang, W. Ye, H. Zhen, et al., Chin. Chem. Lett. 36 (2025) 109984.

    50. [50]

      R. Shen, G. Liang, L. Hao, et al., Adv. Mater. 35 (2023) 2303649.

    51. [51]

      Y. Wu, Y. Yang, M. Gu, et al., Chin. J. Catal. 53 (2023) 123–133.

    52. [52]

      R.I. Rodríguez, V. Corti, L. Rizzo, et al., Nat. Catal. 7 (2024) 1223–1231.

    53. [53]

      Y. Xing, X. Wang, S. Hao, et al., Chin. Chem. Lett. 32 (2021) 13–20.

    54. [54]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18–21.

    55. [55]

      H. Wang, L. Yu, J. Jiang, et al., Acta Phys. Chim. Sin. 40 (2024) 2305047.

    56. [56]

      J. Yu, X. Yao, P. Su, et al., J. Liaocheng Univ. Nat. Sci. Ed. 37 (2024) 52–61.

    57. [57]

      F. Li, G. Zhu, J. Jiang, et al., J. Mater. Sci. Technol. 177 (2024) 142–180.

    58. [58]

      Z. Pan, W. Ding, H. Chen, et al., Chin. Chem. Lett. 35 (2024) 108567.

    59. [59]

      X. Ma, S. Li, Y. Gao, et al., Adv. Funct. Mater. 34 (2024) 2409913.

    60. [60]

      K. Dong, C. Shen, R. Yan, et al., Acta Phys. Chim. Sin. 40 (2024) 2310013.

    61. [61]

      B. He, P. Xiao, S. Wan, et al., Angew. Chem. Int. Ed. 62 (2023) e202313172.

    62. [62]

      H. Guo, L. Zhou, K. Huang, et al., Adv. Funct. Mater. 34 (2024) 2402650.

    63. [63]

      H. He, Z. Wang, J. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2315426.

    64. [64]

      B. Zhu, C. Jiang, J. Xu, et al., Mater. Today. 82 (2025) 251–273.

    65. [65]

      W. Yu, C. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022.

    66. [66]

      C. Chen, J. Zhang, H. Chu, et al., Chin. J. Catal. 63 (2024) 81–108.

    67. [67]

      J.Y. Yue, J.X. Luo, Z.X. Pan, et al., Angew. Chem. Int. Ed. 63 (2024) e202405763.

    68. [68]

      S. Wan, W. Wang, B. Cheng, et al., Nat. Commun. 15 (2024) 9612.

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    3. [3]

      Yueting MaZhiyan FengYuxin DongZhiyong YanHou WangYan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922

    4. [4]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    5. [5]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    12. [12]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    13. [13]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    16. [16]

      Tianjun NiHui ZhangLiping ZhouRoujie MaYanyu WangZhijun YangDan LuoNithima KhaorapapongXingtao XuYusuke YamauchiDong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659

    17. [17]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    18. [18]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    19. [19]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    20. [20]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return