Citation: Mengzhao Liu, Jie Yin, Chengjian Wang, Weiji Wang, Yuan Gao, Mengxia Yan, Ping Geng. P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction[J]. Chinese Chemical Letters, ;2025, 36(9): 111271. doi: 10.1016/j.cclet.2025.111271 shu

P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction

    * Corresponding author.
    E-mail address: gengping@sdut.edu.cn (P. Geng).
  • Received Date: 16 January 2025
    Revised Date: 22 April 2025
    Accepted Date: 27 April 2025
    Available Online: 29 April 2025

Figures(5)

  • The biomass electrochemical oxidation coupled with hydrogen evolution reaction has received widespread attention due to its carbon-neutral and sustainable properties. The electrosynthesis of 2,5-furanodicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) oxidation is one of the most promising means for the production of bioplastic monomers. In this work, we constructed a novel P-doped Ni3S2 and Ni heterojunction on nickel foam (P-Ni3S2/Ni/NF) using electrodeposition methods and thermal sulfuration techniques as a bifunctional catalyst for the simultaneous anodic oxidation of HMF to FDCA (HMFOR) and the cathodic hydrogen evolution reaction (HER). On one hand, the synergistic promotion of P doping and the heterojunction of Ni3S2 and Ni accelerated electron transfer, and on the other hand, the structure of three-dimensional microsphere stacking on NF surface to form macropores enhances the exposure of catalytically active sites. The prepared P-Ni3S2/Ni/NF exhibited remarkable performance with high HMF conversion (99.2%), FDCA yield (98.1%), and Faraday efficiency (98.8%), and excellent stability with good product selectivity for 7 consecutive cycles, which stands at a higher level than majority of previously published electrocatalysts. Furthermore, P-Ni3S2/Ni/NF also shows a significant response in HER. By using HMFOR and HER as the anodic reaction and cathodic reaction, respectively, the biomass upgrading and hydrogen production can be carried out simultaneously. The synthesized P-Ni3S2/Ni/NF only need a voltage of 1.31 V to achieve a current density of 10 mA/cm2 in a two-electrode system of HMFOR and HER, which is much lower than that of 1.48 V in OER and HER process, thus potentially reducing the cost of this process.
  • 加载中
    1. [1]

      K.H. Lee, Y.X. Jing, Y.Q. Wang, N. Yan, Nat. Rev. Chem. 6 (2022) 635–652.  doi: 10.1038/s41570-022-00411-8

    2. [2]

      S. Li, S. Wang, Y. Wang, et al., Adv. Funct. Mater. 33 (2023) 2214488.  doi: 10.1002/adfm.202214488

    3. [3]

      Y. Song, W. Xie, Y. Song, et al., Appl. Catal. B: Environ. 312 (2022) 121400.  doi: 10.1016/j.apcatb.2022.121400

    4. [4]

      X.L. Pang, H.Y. Bai, H.Q. Zhao, W.Q. Fan, W.D. Shi, ACS Catal. 12 (2022) 1545–1557.  doi: 10.1021/acscatal.1c04880

    5. [5]

      Y. Lu, T. Liu, Y. Huang, et al., ACS Catal. 12 (2022) 4242–4251.  doi: 10.1021/acscatal.2c00174

    6. [6]

      N.Z. Shang, W.J. Li, Q.Y. Wu, et al., J. Colloid Interfaces Sci. 659 (2024) 621–628.  doi: 10.1016/j.jcis.2024.01.040

    7. [7]

      M.K. Qin, J.D. Chen, M.H. Qi, et al., ACS Catal. 14 (2024) 8414–8426.  doi: 10.1021/acscatal.4c01705

    8. [8]

      S. Sarkar, S. Behera, R. Munjal, et al., Energy Fuels 38 (2024) 5183–5191.  doi: 10.1021/acs.energyfuels.4c00029

    9. [9]

      H.L. Dai, Y.F. Huang, H.Y. Bai, et al., Adv. Energy Mater. 14 (2024) 2402789.  doi: 10.1002/aenm.202402789

    10. [10]

      Y.F. Zhou, Y. Shen, H.Y. Li, Mater. Today Catal. 4 (2024) 100041.

    11. [11]

      B. Kim, K.L. Yang, K. Park, et al., J. Catal. 435 (2024) 115542.  doi: 10.1016/j.jcat.2024.115542

    12. [12]

      Z.H. Yang, S. Wang, C.Y. Wei, et al., Energy Environ. Sci. 17 (2024) 1603.  doi: 10.1039/D3EE04543A

    13. [13]

      J. Wu, K. Wang, T.Q. Yu, et al., J. Colloid Interfaces Sci. 655 (2024) 676–684.  doi: 10.1016/j.jcis.2023.11.061

    14. [14]

      T. Chen, Y.L. Li, F.P. Ma, et al., J. Mater. Chem. A 12 (2024) 12237.  doi: 10.1039/D4TA01071J

    15. [15]

      X.L. Pang, H.Y. Bai, Y.F. Huang, et al., J. Catal. 417 (2023) 22–34.  doi: 10.1016/j.jcat.2022.11.029

    16. [16]

      B. You, N. Jiang, X. Liu, et al., Angew. Chem. Int. Ed. 55 (2016) 9913–9917.  doi: 10.1002/anie.201603798

    17. [17]

      B. You, X. Liu, N. Jiang, et al., J. Am. Chem. Soc. 138 (2016) 13639–13646.  doi: 10.1021/jacs.6b07127

    18. [18]

      N. Zhang, Y. Zou, L. Tao, et al., Angew. Chem. Int. Ed. 58 (2019) 15895–15903.  doi: 10.1002/anie.201908722

    19. [19]

      B.L. Zhang, Z.J. Li, Y.S. Zhou, et al., Small 20 (2024) 2306663.

    20. [20]

      P.Y. Jin, L. Zhang, Z. Wu, et al., Chem. Eng. J. 481 (2024) 148303.

    21. [21]

      B.L. Zhang, H. Fu, T.C. Mu, Green Chem. 24 (2022) 877–884.

    22. [22]

      J.F. Qin, M. Yang, T.S. Chen, et al., Int. J. Hydrog. Energy 45 (2020) 2745–2753.

    23. [23]

      Y. Zhao, J. You, L. Wang, et al., Int. J. Hydrog. Energy 46 (2021) 39146–39182.

    24. [24]

      J. Mei, X.H. Cheng, Q. Wu, J. Alloy Compd. 1008 (2024) 176386.

    25. [25]

      S. Kogularasu, Y.Y. Lee, B. Sriram, et al., Angew. Chem. Int. Ed. 63 (2024) e202311806.

    26. [26]

      L. Chen, Z.H. Yang, C.Y. Yan, et al., Chem. Sci. 15 (2024) 12047.

    27. [27]

      W. Peng, Y.R. Lu, H.P. Lin, et al., ACS Nano 17 (2023) 22691–22700.

    28. [28]

      J. Wang, T. Liao, Z.Z. Wei, et al., Small Methods 5 (2021) 2000988.

    29. [29]

      M.Z. Liu, W.G. Cui, Z. Sun, et al., Electrochim. Acta 477 (2024) 143713.

    30. [30]

      B.W. Zhang, K. Jiang, H.T. Wang, et al., Nano Lett. 19 (2019) 530–537.

    31. [31]

      Y.J. Yao, Z.M. Tao, H.W. Hu, et al., J. Environ. Sci. 150 (2025) 704–718.

    32. [32]

      R. Shi, H.F. Ye, F. Liang, et al., Adv. Mater. 30 (2018) 1705941.

    33. [33]

      F. Nie, X.L. Yin, Y.H. Cao, et al., Fuel 348 (2023) 128509.

    34. [34]

      X.L. Lin, L.J. Xue, B.W. Liu, et al., J. Colloid Interfaces Sci. 644 (2023) 295–303.

    35. [35]

      W.X. Li, X. Xing, R.Y. Ge, et al., Sustain. Mater. Technol. 38 (2023) e00743.

    36. [36]

      M.B.Z. Hegazy, M.R. Berber, Y. Yamauchi, et al., ACS Appl. Mater. Interfaces 13 (2021) 34043–34052.

    37. [37]

      J.X. Zhou, L. Zhao, Q. Wang, et al., Chin. Chem. Lett. 33 (2022) 3035–3038.

    38. [38]

      J.H. Lin, H.H. Wang, J. Cao, et al., J. Colloid Interfaces Sci. 571 (2020) 260–266.

    39. [39]

      L.X. Zheng, S.B. Wang, Y.Z. Wang, et al., Nanotechnology 33 (2022) 265701.

    40. [40]

      L.L. Wang, Y. Yan, R.L. Li, et al., Chin. Chem. Lett. 35 (2024) 110011.

    41. [41]

      X.Y. Lu, K. Qi, X.Y. Dai, et al., Chem. Sci. 15 (2024) 11043.

    42. [42]

      M.G. Sendeku, K. Harrath, F.T. Dajan, et al., Nat. Commun. 15 (2024) 5174.

    43. [43]

      L.L. Wang, Y. Yan, R.L. Li, et al., Chin. Chem. Lett. 35 (2024) 110011.

    44. [44]

      Y.F. Huang, H.L. Dai, Z.Z. Huang, et al., Chem. Eng. J. 479 (2024) 147779.

    45. [45]

      J.S. Wang, W.R. Zhao, H. Yu, et al., Appl. Catal. B: Environ. 353 (2024) 124086.

    46. [46]

      H.L. Dai, P.J. Zhou, S.M. Yang, et al., Inorg. Chem. 63 (2024) 16541–16553.

    47. [47]

      S.E. Davis, B.N. Zope, R.J. Davis, Green Chem. 14 (2012) 143–147.

    48. [48]

      Y.J. Song, Z.H. Li, K. Fan, et al., Appl. Catal. B: Environ. 299 (2021) 120669.

  • 加载中
    1. [1]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    2. [2]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    3. [3]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    4. [4]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    5. [5]

      Rui Deng Wenjie Jiang Tianqi Yu Jiali Lu Boyao Feng Panagiotis Tsiakaras Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290

    6. [6]

      Wenjie Jiang Zhixiang Zhai Xiaoyan Zhuo Jia Wu Boyao Feng Tianqi Yu Huan Wen Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519

    7. [7]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    8. [8]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    9. [9]

      Ping WangTing WangMing XuZe GaoHongyu LiBowen LiYuqi WangChaoqun QuMing Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930

    10. [10]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    11. [11]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    12. [12]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    13. [13]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    14. [14]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    15. [15]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    16. [16]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    17. [17]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    18. [18]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    19. [19]

      Ji ChenYifan ZhaoShuwen ZhaoHua ZhangYouyu LongLingfeng YangMin XiZitao NiYao ZhouAnran Chen . Heterogeneous bimetallic oxides/phosphides nanorod with upshifted d band center for efficient overall water splitting. Chinese Chemical Letters, 2024, 35(9): 109268-. doi: 10.1016/j.cclet.2023.109268

    20. [20]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return