Beyond superhalogen assembly: Field-driven hyperhalogen design via dual-external-field cooperativity
-
* Corresponding author.
E-mail address: shibocheng@sdu.edu.cn (S.-B. Cheng).
Citation:
Ao-Hua Wang, Jun Li, Shi-Hu Du, Jia Liu, Yao Zhang, Muhammad Bilal Ahmed Siddique, Jing Chen, Shi-Bo Cheng. Beyond superhalogen assembly: Field-driven hyperhalogen design via dual-external-field cooperativity[J]. Chinese Chemical Letters,
;2026, 37(1): 111265.
doi:
10.1016/j.cclet.2025.111265
A.W. Castleman Jr., K.H. Bowen, J. Phys. Chem. 100 (1996) 12911–12944.
doi: 10.1021/jp961030k
A.W. Castleman Jr., P. Jena, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10554–10559.
doi: 10.1073/pnas.0601780103
P. Jena, Q. Sun, Chem. Rev. 118 (2018) 5755–5870.
doi: 10.1021/acs.chemrev.7b00524
G.D. Stein, Phys. Teach. 17 (1979) 503–512.
doi: 10.1119/1.2340341
A.W. Castleman Jr., P. Jena, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 10552–10553.
doi: 10.1073/pnas.0601783103
J. Li, X. Li, H.-J. Zhai, et al., Science (1979) 299 (2003) 864–867.
H. Fang, P. Jena, J. Phys. Chem. Lett. 7 (2016) 1596–1603.
doi: 10.1021/acs.jpclett.6b00435
V. Bonačić-Koutecký, M. Perić, Ž. Sanader, J. Phys. Chem. Lett. 9 (2018) 2584–2589.
doi: 10.1021/acs.jpclett.8b00819
P. Koirala, M. Willis, B. Kiran, et al., J. Phys. Chem. C 114 (2010) 16018–16024.
doi: 10.1021/jp101807s
X.N. Li, L.X. Jiang, L.N. Wang, et al., J. Phys. Chem. Lett. 10 (2019) 7850–7855.
doi: 10.1021/acs.jpclett.9b03056
Z.C. Wang, N.V. Tkachenko, L. Qiao, et al., Chem. Comm. 56 (2020) 6583–6586.
doi: 10.1039/d0cc02525a
J. Zhao, N. Ma, T. Wang, et al., J. Mater. Chem. A 10 (2022) 21611–21621.
doi: 10.1039/d2ta04855h
Y. Zhao, J. Wang, H.C. Huang, et al., J. Phys. Chem. Lett. 11 (2020) 1093–1099.
doi: 10.1021/acs.jpclett.9b03794
D.E. Bergeron, A.W. Castleman Jr., T. Morisato, et al., Science (1979) 304 (2004) 84–87.
D.E. Bergeron, P.J. Roach, A.W. Castleman Jr., et al., Science (1979) 307 (2005) 231–235.
doi: 10.1126/science.1105820
Z. Luo, A.W. Castleman Jr., Acc. Chem. Res. 47 (2014) 2931–2940.
doi: 10.1021/ar5001583
S.N. Khanna, P. Jena, Phys. Rev. Lett. 69 (1992) 1664–1667.
doi: 10.1103/PhysRevLett.69.1664
S.N. Khanna, P. Jena, Phys. Rev. B 51 (1995) 13705–13716.
doi: 10.1103/PhysRevB.51.13705
G.L. Gutsev, A.I. Boldyrev, Chem. Phys. 56 (1981) 277–283.
doi: 10.1016/0301-0104(81)80150-4
H. Wang, J. Li, J. Chen, et al., Chin. Chem. Lett. 34 (2023) 108222.
doi: 10.1016/j.cclet.2023.108222
Y. Gao, S. Bulusu, X.C. Zeng, J. Am. Chem. Soc. 127 (2005) 15680–15681.
doi: 10.1021/ja055407o
Q. Xue, M. Zhong, J. Zhou, et al., J. Mater. Chem. A 126 (2022) 3536–3542.
doi: 10.1021/acs.jpca.2c02530
L.P. Ding, P. Shao, C. Lu, et al., Sci. Rep. 7 (2017) 45149.
doi: 10.1038/srep45149
Y.J. Ko, H. Wang, K. Pradhan, et al., J. Chem. Phys. 135 (2011) 244312.
doi: 10.1063/1.3671457
H.T. Nguyen, N.T. Cuong, N.T. Lan, et al., RSC Adv. 12 (2022) 13487–13499.
doi: 10.1039/d1ra08527a
B. Yin, Q. Du, L. Geng, et al., J. Phys. Chem. Lett. 11 (2020) 5807–5814.
doi: 10.1021/acs.jpclett.0c01643
B. Pathak, D. Samanta, R. Ahuja, et al., Chemphyschem. 12 (2011) 2423–2428.
doi: 10.1002/cphc.201100320
I. Anusiewicz, S. Freza, P. Skurski, Inorg. Chem. 55 (2016) 10161–10169.
doi: 10.1021/acs.inorgchem.6b01304
Q. Wang, Q. Sun, P. Jena, J. Chem. Phys. 131 (2009) 124301.
doi: 10.1063/1.3236576
S. Smuczyńska, P. Skurski, Inorg. Chem. 48 (2009) 10231–10238.
doi: 10.1021/ic901253r
F. Wudl, Acc. Chem. Res. 17 (1984) 227–232.
doi: 10.1021/ar00102a005
C. Sikorska, P. Skurski, Inorg. Chem. 50 (2011) 6384–6391.
doi: 10.1021/ic200945e
W.D. Knight, K. Clemenger, W.A. de Heer, et al., Phys. Rev. Lett. 52 (1984) 2141–2143.
doi: 10.1103/PhysRevLett.52.2141
G.N. Lewis, J. Am. Chem. Soc. 38 (1916) 762–785.
doi: 10.1021/ja02261a002
I. Langmuir, J. Am. Chem. Soc. 41 (1919) 868–934.
doi: 10.1021/ja02227a002
I. Langmuir, Science (1979) 54 (1921) 59–67.
doi: 10.1126/science.54.1386.59
K. Wade, J. Chem. Soc. D: Chem. Comm. (1971) 792–793.
D.M.P. Mingos, Nat. Phys. Sci. 236 (1972) 99–102.
doi: 10.1038/physci236099a0
D.M.P. Mingos, Acc. Chem. Res. 17 (1984) 311–319.
doi: 10.1021/ar00105a003
M. Willis, M. Götz, A.K. Kandalam, et al., Angew. Chem. Int. Ed. 49 (2010) 8966–8970.
doi: 10.1002/anie.201002212
M.-S. Liao, J.D. Watts, M.-J. Huang, J. Phys. Chem. C 118 (2014) 21911–21927.
doi: 10.1021/jp501701f
H. Handschuh, C.Y. Cha, P.S. Bechthold, et al., J. Chem. Phys. 102 (1995) 6406–6422.
doi: 10.1063/1.469356
A.C. Aragonès, N.L. Haworth, N. Darwish, et al., Nature 531 (2016) 88–91.
doi: 10.1038/nature16989
J. Bai, A. Daaoub, S. Sangtarash, et al., Nat. Mater. 18 (2019) 364–369.
doi: 10.1038/s41563-018-0265-4
Z. Chen, L. Chen, J. Liu, et al., J. Phys. Chem. Lett. 10 (2019) 3453–3458.
doi: 10.1021/acs.jpclett.9b00796
K.L.D.M. Weerawardene, C.M. Aikens, J. Phys. Chem. C 122 (2018) 2440–2447.
doi: 10.1021/acs.jpcc.7b11706
C.P. Joshi, M.S. Bootharaju, M.J. Alhilaly, et al., J. Am. Chem. Soc. 137 (2015) 11578–11581.
doi: 10.1021/jacs.5b07088
C.M. Aikens, J. Phys. Chem. C 112 (2008) 19797–19800.
doi: 10.1021/jp8090914
A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
doi: 10.1063/1.449486
A.E. Reed, F. Weinhold, J. Chem. Phys. 78 (1983) 4066–4073.
doi: 10.1063/1.445134
J.P. Foster, F. Weinhold, J. Am. Chem. Soc. 102 (1980) 7211–7218.
doi: 10.1021/ja00544a007
X. Xie, Y. Li, Z.-Q. Liu, et al., Nature 458 (2009) 746–749.
doi: 10.1038/nature07877
M. Valden, X. Lai, D.W. Goodman, Science 281 (1998) 1647–1650.
doi: 10.1126/science.281.5383.1647
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Ruru Li , Qian Liu , Hui Li , Fengbin Sun , Zhurui Shen . Rational design of dual sites induced local electron rearrangement for enhanced photocatalytic oxygen activation. Chinese Chemical Letters, 2024, 35(11): 109679-. doi: 10.1016/j.cclet.2024.109679
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Huifang Ma , Tao Xu , Saifei Yuan , Shujuan Li , Jiayao Wang , Yuping Zhang , Hao Ren , Shulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219
Qing Li , Fangyu Fu , Mengyun Zhao , Yeqin Feng , Manzhou Chi , Zichen Zhao , Hongjin Lv , Guo-Yu Yang . Asymmetrically anchoring silver alkynyl cluster to the cobalt-containing polyoxometalate. Chinese Chemical Letters, 2025, 36(7): 110090-. doi: 10.1016/j.cclet.2024.110090
Cheng-Cheng Jiao , Guang-Xing Dong , Ke Su , You-Xiang Feng , Min Zhang , Tong-Bu Lu . The construction of InVO4/BiVO4 heterojunction via cation-exchange for efficient and highly selective CO2 photoreduction to methanol. Chinese Chemical Letters, 2026, 37(1): 110752-. doi: 10.1016/j.cclet.2024.110752
Junqing Ye , Mengyuan Ren , Junfeng Qian , Xibao Li , Qun Chen . Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions. Chinese Chemical Letters, 2025, 36(9): 110857-. doi: 10.1016/j.cclet.2025.110857
Fengzhi Wang , Ke Hu , Jinquan Chen , Zhubin Hu , Haitao Sun , Tony D. James , Yufang Xu , Xuhong Qian . Meta-amino substituted naphthalimides exhibit large charge transfer and strong N-H vibrations enabling use as ratiometric fluorescent probe. Chinese Chemical Letters, 2026, 37(1): 110971-. doi: 10.1016/j.cclet.2025.110971
Yuchen Wang , Yaoyu Liu , Xiongfei Huang , Guanjie He , Kai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301
Bo Yang , Suqiong Yan , Shirong Ban , Wei Huang . New horizons in phosphorus-based emitters: From circularly polarized fluorescence to room-temperature phosphorescence. Chinese Chemical Letters, 2025, 36(11): 110837-. doi: 10.1016/j.cclet.2025.110837
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030
Gaopeng Liu , Lina Li , Bin Wang , Ningjie Shan , Jintao Dong , Mengxia Ji , Wenshuai Zhu , Paul K. Chu , Jiexiang Xia , Huaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Huizhong Wu , Ruiheng Liang , Ge Song , Zhongzheng Hu , Xuyang Zhang , Minghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131
Xing Xiao , Yunling Jia , Wanyu Hong , Yuqing He , Yanjun Wang , Lizhi Zhao , Huiqin An , Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474
Ying Hou , Zhen Liu , Xiaoyan Liu , Zhiwei Sun , Zenan Wang , Hong Liu , Weijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634
Xin Jiang , Han Jiang , Yimin Tang , Huizhu Zhang , Libin Yang , Xiuwen Wang , Bing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415
Yueting Ma , Zhiyan Feng , Yuxin Dong , Zhiyong Yan , Hou Wang , Yan Wu . Harnessing the interfacial sulfur-edge and metal-edge sites in ZnIn2S4/MnS heterojunctions boosts charge transfer for photocatalytic hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110922-. doi: 10.1016/j.cclet.2025.110922
Fang Niu , Rong Li , Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102