Citation: Haoquan Huang, Haiting Chen, Xinran Dong, Yanbin Xu, Anlian Huang, Qiaoyi Cen, Huairou Zhu, Guosheng Chen, Wei Yi, Siming Huang, Gangfeng Ouyang. Site-specific surface amination strategy facilitates biomimetic encapsulation of enzymes within hydrogen-bonded organic framework[J]. Chinese Chemical Letters, ;2025, 36(9): 111223. doi: 10.1016/j.cclet.2025.111223 shu

Site-specific surface amination strategy facilitates biomimetic encapsulation of enzymes within hydrogen-bonded organic framework

    * Corresponding authors.
    E-mail addresses: chengsh39@mail.sysu.edu.cn (G. Chen), huangsm@gzhmu.edu.cn (S. Huang).
    1 These authors contributed equally to this work.
  • Received Date: 16 December 2024
    Revised Date: 14 April 2025
    Accepted Date: 16 April 2025
    Available Online: 16 April 2025

Figures(5)

  • Hydrogen-bonded framework (HOF) offers an attractive platform to encapsulate enzymes and stabilize their conformation, due to the advantages of mild synthesis conditions, tailorable pore structure, and backbone biocompatibility. However, the efficiency of this HOF approach relies on the interfacial interactions between enzyme guest and the ligand precursors, limiting its adaptability to enzymes with varying surface chemistry property. In this study, we report a site-specific surface modification strategy to positively tailor the enzyme surface charge, facilitating the biomimetic encapsulation of enzymes within HOF in situ. Both experimental results and computational simulation reveal that site-specific amination of enzyme surface's acidic residues contributes to the interfacial accumulation of carboxylic ligand precursors in aqueous solutions via synergistic electrostatic and hydrogen bonding interactions. This substantially facilitates the in situ growth of porous HOF surrounding the aminated enzyme biotemplates, with up to 100% enzyme loading efficiency. The resultant hydrogen-bonded biohybrid framework (HBF) retains high biocatalytic functions while exhibiting exceptional stability under harsh conditions. By leveraging the marked catalytic activity of GOx-NH2@HBF-1 and a H2O2-sensitive QD, a highly sensitive glucose fluorescence sensor is fabricated with a wide linear range (5–2000 µmol/L) and a low quantification limit of 5 µmol/L. This work presents a simple yet effective enzyme surface engineering approach for integrating enzyme into HOF, opening new avenues for the construction of multifunctional HOF biocomposites.
  • 加载中
    1. [1]

      H.E. Schoemaker, D. Mink, M.G. Wubbolts, Science 299 (2003) 1694–1697.  doi: 10.1126/science.1079237

    2. [2]

      U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, et al., Nature 485 (2012) 185–194.  doi: 10.1038/nature11117

    3. [3]

      M. Pfefferkorn, S. Böhm, T. Schott, et al., Gut 67 (2018) 2045–2053.  doi: 10.1136/gutjnl-2017-313811

    4. [4]

      R. Jiang, G. Luo, G. Chen, et al., Sci. Adv. 10 (2024) eadp1796.  doi: 10.1126/sciadv.adp1796

    5. [5]

      S. Singh, P.K. Sharma, S. Chaturvedi, et al., Food Chem. 435 (2024) 137217.  doi: 10.1016/j.foodchem.2023.137217

    6. [6]

      M.M. Kristjánsson, J.E. Kinsella, Adv. Food Nutri. Res. 35 (1991) 237–316.

    7. [7]

      C. Selvaraj, O. Rudhra, A.S. Alothaim, M. Alkhanani, S.K. Singh, Adv. Protein Chem. Str. 130 (2022) 59–83.

    8. [8]

      M. Bilal, S.A. Qamar, D. Carballares, Á. Berenguer-Murcia, R. Fernandez-Lafuente, Biotechnol. Adv. 70 (2024) 108304.  doi: 10.1016/j.biotechadv.2023.108304

    9. [9]

      W. Liang, P. Wied, F. Carraro, et al., Chem. Rev. 121 (2021) 1077–1129.  doi: 10.1021/acs.chemrev.0c01029

    10. [10]

      Q. Zhu, Y. Zheng, Z. Zhang, Y. Chen, Nat. Protoc. 18 (2023) 3080–3125.  doi: 10.1038/s41596-023-00868-x

    11. [11]

      R.B. Lin, B. Chen, Chem 8 (2022) 2114–2135.  doi: 10.1016/j.chempr.2022.06.015

    12. [12]

      S. Huang, G. Chen, G. Ouyang, Chem. Soc. Rev. 51 (2022) 6824–6863.  doi: 10.1039/D1CS01011E

    13. [13]

      Z. Chen, K.O. Kirlikovali, P. Li, O.K. Farha, Acc. Chem. Res. 55 (2022) 579–591.  doi: 10.1021/acs.accounts.1c00707

    14. [14]

      K. Liang, R. Ricco, C.M. Doherty, et al., Nat. Commun. 6 (2015) 7240.  doi: 10.1038/ncomms8240

    15. [15]

      W. Liang, H. Xu, F. Carraro, et al., J. Am. Chem. Soc. 141 (2019) 2348–2355.  doi: 10.1021/jacs.8b10302

    16. [16]

      W. Liang, K. Flint, Y. Yao, et al., J. Am. Chem. Soc. 145 (2023) 20365–20374.  doi: 10.1021/jacs.3c05488

    17. [17]

      J.C. Díaz, B. Lozano-Torres, M. Giménez-Marqués, Chem. Mater. 34 (2022) 7817–7827.  doi: 10.1021/acs.chemmater.2c01338

    18. [18]

      I. Akpinar, X. Wang, K. Fahy, et al., J. Am. Chem. Soc. 146 (2024) 5108–5117.  doi: 10.1021/jacs.3c07785

    19. [19]

      T.H. Wei, S.H. Wu, Y.D. Huang, et al., Nat. Commun. 10 (2019) 5002.

    20. [20]

      H.Y. Guan, R.J. LeBlanc, S.Y. Xie, Y. Yue, Coordin. Chem. Rev. 369 (2018) 76–90.

    21. [21]

      Q. Liu, Y. Song, Y. Ma, et al., J. Am. Chem. Soc. 141 (2019) 488–496.  doi: 10.1021/jacs.8b11230

    22. [22]

      Z. Zhang, Y. Ye, S. Xiang, B. Chen, Acc. Chem. Res. 55 (2022) 3752–3766.  doi: 10.1021/acs.accounts.2c00686

    23. [23]

      Z.J. Lin, S.A.R. Mahammed, T.F. Liu, R. Cao, ACS Cent. Sci. 8 (2022) 1589–1608.

    24. [24]

      I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Angew. Chem. Int. Ed. 58 (2019) 11160–11170.

    25. [25]

      C. Huang, C. Zhao, Q. Deng, et al., Nat. Catal. 6 (2023) 729–739.

    26. [26]

      S. Huang, J. Li, Y. Lin, et al., J. Am. Chem. Soc. 146 (2024) 1967–1976.

    27. [27]

      G. Chen, S. Huang, X. Ma, R. He, G. Ouyang, Nat. Protoc. 18 (2023) 2032–2050.

    28. [28]

      A. Huang, H. Yang, S. Huang, G. Chen, G. Ouyang, Matter 6 (2023) 2635–2646.

    29. [29]

      W. Huang, H. Yuan, H. Yang, et al., Nat. Commun. 14 (2023) 3644.

    30. [30]

      G. Chen, L. Tong, S. Huang, et al., Nat. Commun. 13 (2023) 4816.

    31. [31]

      W. Huang, H. Yuan, H. Yang, et al., JACS Au 2 (2022) 2048–2058.

    32. [32]

      G. Chen, S. Huang, Y. Shen, et al., Chem 7 (2021) 2722–2742.

    33. [33]

      Z. Tang, X. Li, L. Tong, et al., Angew. Chem. Int. Ed. 60 (2021) 23608– 23613.

    34. [34]

      H. Yang, J. Fu, W. Huang, et al., Small Struct. 4 (2023) 2200346.

    35. [35]

      S. Hayashi, S. Nakamura, BBA–Enzymology 657 (1981) 40–51.

    36. [36]

      N.K. Maddigan, A. Tarzia, D.M. Huang, et al., Chem. Sci. 9 (2018) 4217–4223.

    37. [37]

      F.C. Church, D.H. Porter, G.L. Catignani, H.E. Swaisgood, Anal. Biochem. 146 (1985) 343–348.

    38. [38]

      B.B. Pinheiro, N.S. Rios, G. Zanatta, B.C. Pessela, L.R.B. Gonçalves, Process Biochem. 133 (2023) 292–302.

    39. [39]

      W.H. Chen, M. Vázquez-González, A. Zoabi, R. Abu-Reziq, I. Willner, Nat. Catal. 1 (2018) 689–695.

    40. [40]

      Z. Xu, Y.K. Cen, S.P. Zou, Y.P. Xue, Y.G. Zheng, Crit. Rev. Biotechnol. 40 (2019) 83–98.

    41. [41]

      N.G. Nezhad, R.N.Z.R.A. Rahman, Y.M. Normi, et al., Int. J. Biol. Macromol. 232 (2023) 123440.

    42. [42]

      N. Özer, M. Müftüoglu, D. Ataman, A. Ercan, I.H. Ögüs, J. Biochem. Bioph. Meth. 39 (1999) 153–159.

    43. [43]

      S. O'Connell, G. Walsh, Appl. Microbiol. Biotechnol. 86 (2010) 517–524.

    44. [44]

      Z. Li, J.R. Askim, K.S. Suslick, Chem. Rev. 119 (2019) 231–292.

    45. [45]

      H. Chen, H. Huang, H. Xu, et al., Small 20 (2024) 2308716.

    46. [46]

      L.A. Pérez-Márquez, M.D. Perretti, R. García-Rodríguez, F. Lahoz, R. Carrillo, Angew. Chem. Int. Ed. 61 (2022) e202205403.

    47. [47]

      Y. Wang, B. Li, T. Tian, et al., TrAC-Trends Anal. Chem. 149 (2022) 116565.

    48. [48]

      N.E. Azmi, N.I. Ramli, J. Abdullah, et al., Biosens. Bioelectron. 67 (2015) 129–133.

    49. [49]

      L. Lin, Y. Wen, Y. Liang, N. Zhang, D. Xiao, Anal. Methods 5 (2013) 457–464.

    50. [50]

      A. Singh, A.S.K. Sinha, Appl. Surface Sci. 430 (2018) 184–197.

    51. [51]

      X. Li, C. Li, L. Chen, New J. Chem. 39 (2015) 9976–9982.

  • 加载中
    1. [1]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    4. [4]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    5. [5]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    6. [6]

      Guangying WangQinglong QiaoWenhao JiaYiyan RuanKai AnWenchao JiangXuelian ZhouZhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130

    7. [7]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    8. [8]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    9. [9]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    10. [10]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    11. [11]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    12. [12]

      Li LiLin-Lin ZhangYansha GaoLu-Ying DuanWuying YangXigen HuangYanping HongJiaxin HongLin YuanLimin Lu . Target self-calibration ratiometric fluorescent sensor based on facile-synthesized europium metal-organic framework for multi-color visual detection of levofloxacin. Chinese Chemical Letters, 2025, 36(7): 110436-. doi: 10.1016/j.cclet.2024.110436

    13. [13]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    14. [14]

      Zhiyao YangKuirong FuWentao YuAlong JiaXinnan ChenYimin CaiXiaowei LiWen FengLihua Yuan . A multi-stimuli responsive [3]rotaxane based on hydrogen-bonded aramide azo-macrocycles. Chinese Chemical Letters, 2025, 36(9): 110842-. doi: 10.1016/j.cclet.2025.110842

    15. [15]

      Yujuan ZhouKecheng Jie . Conformationally adaptive metal–organic cages for dynamic guest encapsulation. Chinese Chemical Letters, 2025, 36(6): 111007-. doi: 10.1016/j.cclet.2025.111007

    16. [16]

      Jian LiJinjin ChenQi-Long HuZhen WangXiao-Feng Xiong . Recent progress of chemical methods for lysine site-selective modification of peptides and proteins. Chinese Chemical Letters, 2025, 36(5): 110126-. doi: 10.1016/j.cclet.2024.110126

    17. [17]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    18. [18]

      Chong WangHao XieRulan XiaXuewei LiaoJin WangHuajun YangChen Wang . Nanofluidic ion rectification sensor for enantioselective recognition and detection. Chinese Chemical Letters, 2025, 36(8): 110642-. doi: 10.1016/j.cclet.2024.110642

    19. [19]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    20. [20]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

Metrics
  • PDF Downloads(0)
  • Abstract views(7)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return