Catalytic construction of P-stereogenic center via phosphorus-centered nucleophilic substitution
-
* Corresponding authors.
E-mail addresses: huangxuan8@163.com (X. Huang), robinchi@ntu.edu.sg (Y.R. Chi).
Citation:
Bingbing Dong, Junmin Zhang, Xiang-Yu Ye, Xuan Huang, Yonggui Robin Chi. Catalytic construction of P-stereogenic center via phosphorus-centered nucleophilic substitution[J]. Chinese Chemical Letters,
;2025, 36(9): 111052.
doi:
10.1016/j.cclet.2025.111052
U. Pradere, E.C. Garnier-Amblard, S.J. Coats, F. Amblard, R.F. Schinazi, Chem. Rev. 114 (2014) 9154–9218.
doi: 10.1021/cr5002035
J.B. Rodriguez, C. Gallo-Rodriguez, Chem. Med. Chem 14 (2019) 190–216.
doi: 10.1002/cmdc.201800693
S. Han, S.J. Miller, J. Am. Chem. Soc. 135 (2013) 12414–12421.
doi: 10.1021/ja406067v
N. Kurihara, J. Miyamoto, G.D. Paulson, et al., Pure Appl. Chem. 69 (1997) 2007–2026.
doi: 10.1351/pac199769092007
D.W. White, D.E. Gibbs, J.G. Verkade, J. Am. Chem. Soc. 101 (1979) 1937–1942.
doi: 10.1021/ja00502a002
W.R.G. Dostmann, S.S. Taylor, H.G. Genieser, et al., J. Biol. Chem. 265 (1990) 10484–10491.
doi: 10.1016/S0021-9258(18)86973-3
M.D. Sørensen, L.K.A. Blæhr, M.K. Christensen, et al., Biorg. Med. Chem. 11 (2003) 5461–5484.
doi: 10.1016/j.bmc.2003.09.015
A.S. Ray, M.W. Fordyce, M.J.M. Hitchcock, Antiviral Res. 125 (2016) 63–70.
doi: 10.1016/j.antiviral.2015.11.009
D.S. Glueck, Chem. Eur. J. 14 (2008) 7108–7117.
doi: 10.1002/chem.200800267
J.S. Harvey, V. Gouverneur, Chem. Commun. 46 (2010) 7477–7485.
doi: 10.1039/c0cc01939a
K.W. Knouse, J.N. deGruyter, M.A. Schmidt, et al., Science 361 (2018) 1234–1238.
doi: 10.1126/science.aau3369
E.J. Corey, Z. Chen, G.J. Tanoury, J. Am. Chem. Soc. 115 (1993) 11000–11001.
doi: 10.1021/ja00076a072
A. Mondal, N.O. Thiel, R. Dorel, B.L. Feringa, Nat. Catal. 5 (2022) 10–19.
S. Juge, J.P. Genet, Tetrahedron Lett. 30 (1989) 2783–2786.
doi: 10.1016/S0040-4039(00)99124-X
S. Juge, M. Stephan, J.A. Laffitte, J.P. Genet, Tetrahedron Lett. 31 (1990) 6357–6360.
doi: 10.1016/S0040-4039(00)97063-1
T. Koizumi, R. Yanada, H. Takagi, H. Hirai, E. Yoshii, Tetrahedron Lett. 22 (1981) 571–572.
doi: 10.1016/S0040-4039(01)90157-1
Z.S. Han, N. Goyal, M.A. Herbage, et al., J. Am. Chem. Soc. 135 (2013) 2474–2477.
doi: 10.1021/ja312352p
D. Xu, N. Rivas-Bascón, N.M. Padial, et al., J. Am. Chem. Soc. 142 (2020) 5785–5792.
doi: 10.1021/jacs.9b13898
K. Kuwabara, Y. Maekawa, M. Minoura, T. Maruyama, T. Murai, J. Org. Chem. 85 (2020) 14446–14455.
doi: 10.1021/acs.joc.0c00687
X.B. Chen, D. Padín, C.N. Stindt, B.L. Feringa, Angew. Chem. Int. Ed. 62 (2023) e202307450.
doi: 10.1002/anie.202307450
J. Liu, R. Deng, X. Liang, et al., Angew. Chem. Int. Ed. 63 (2024) e202404477.
doi: 10.1002/anie.202404477
R.Y. Zhu, K. Liao, J.S. Yu, J. Zhou, Acta Chim. Sinica 78 (2020) 193–216.
doi: 10.6023/a20010002
C.Y. Wang, T. Zhou, B.F. Shi, ACS Catal. 14 (2024) 7213–7219.
doi: 10.1021/acscatal.4c01212
X. Xia, C. Zheng, Y. Hang, et al., Green Chem. 26 (2024) 8323–8329.
doi: 10.1039/d4gc01404a
S. Zhao, J. Liu, X. Xu, et al., ACS Catal. 14 (2024) 14762–14768.
doi: 10.1021/acscatal.4c04958
H. Zhou, Y. Xue, X. Zhou, H. Yao, A. Lin, Org. Lett. 26 (2024) 5934–5939.
doi: 10.1021/acs.orglett.4c01863
H.L. Hu, S. Fang, X. Luo, et al., Org. Lett. 27 (2025) 109–114.
doi: 10.1021/acs.orglett.4c03992
C. Liu, Y. Yang, W. Hong, J.A. Ma, Y. Zhu, Angew. Chem. Int. Ed. (2024) e202417827.
S. Zhang, J.Z. Xiao, Y.B. Li, C.Y. Shi, L. Yin, J. Am. Chem. Soc. 143 (2021) 9912–9921.
doi: 10.1021/jacs.1c04112
J. Kang, K. Ding, S.M. Ren, B. Su, Angew. Chem. Int. Ed. 62 (2023) e202301628.
doi: 10.1002/anie.202301628
G.J. Lovinger, M.H. Sak, E.N. Jacobsen, Nature 632 (2024) 1052–1059.
doi: 10.1038/s41586-024-07811-4
Y. Toda, M. Pink, J.N. Johnston, J. Am. Chem. Soc. 136 (2014) 14734–14737.
doi: 10.1021/ja5088584
B.M. Trost, S.M. Spohr, A.B. Rolka, C.A. Kalnmals, J. Am. Chem. Soc. 141 (2019) 14098–14103.
doi: 10.1021/jacs.9b07340
F. Che, J. Hu, M. Liao, et al., J. Am. Chem. Soc. 146 (2024) 33763–33773.
doi: 10.1021/jacs.4c11956
L. Pang, Z. Huang, Q. Sun, et al., Nature Commun. 14 (2023) 4437.
doi: 10.1038/s41467-023-40138-8
L. Pang, C. Wang, C. Ma, et al., Org. Lett. 25 (2023) 7705–7710.
doi: 10.1021/acs.orglett.3c02998
L. Pang, Q. Sun, Z. Huang, et al., Angew. Chem. Int. Ed. 61 (2022) e202211710.
doi: 10.1002/anie.202211710
J. Guan, G.J. Wu, F.S. Han, Chem. Eur. J. 20 (2014), 3301–3305.
doi: 10.1002/chem.201303056
G. Xu, M. Li, S. Wang, W. Tang, Org. Chem. Front. 2 (2015) 1342–1345.
doi: 10.1039/C5QO00142K
G.H. Yang, Y. Li, X. Li, J.P. Cheng, Chem. Sci. 10 (2019) 4322–4327.
doi: 10.1039/c8sc05439h
D. Wiktelius, M.J. Johansson, K. Luthman, N. Kann, Org. Lett. 7 (2005) 4991–4994.
doi: 10.1021/ol0519893
Z. Huang, X. Huang, B. Li, et al., J. Am. Chem. Soc. 138 (2016) 7524–7527.
doi: 10.1021/jacs.6b04624
C. Hu, X. Tang, B. Zhang, et al., ACS Catal. 13 (2023) 16300–16306.
doi: 10.1021/acscatal.3c05005
J.S. Harvey, S.J. Malcolmson, K.S. Dunne, et al., Angew. Chem. Int. Ed. 48 (2009) 762–766.
doi: 10.1002/anie.200805066
G. Nishida, K. Noguchi, M. Hirano, K. Tanaka, Angew. Chem. Int. Ed. 47 (2008) 3410–3413.
doi: 10.1002/anie.200800144
Y. Zheng, L. Guo, W. Zi, Org. Lett. 20 (2018) 7039–7043.
doi: 10.1021/acs.orglett.8b02982
Z. Wang, T. Hayashi, Angew. Chem. Int. Ed. 57 (2018) 1702–1706.
doi: 10.1002/anie.201712572
Y. Zhang, F. Zhang, L. Chen, et al., ACS Catal. 9 (2019) 4834–4840.
doi: 10.1021/acscatal.9b00860
R.Y. Zhu, L. Chen, X.S. Hu, F. Zhou, J. Zhou, Chem. Sci. 11 (2020) 97–106.
doi: 10.1039/c9sc04938j
Z.C. Qi, Y. Li, J. Wang, et al., ACS Catal. 13 (2023) 13301–13309.
doi: 10.1021/acscatal.3c03524
A.R. Muci, K.R. Campos, D.A. Evans, J. Am. Chem. Soc. 117 (1995) 9075–9076.
doi: 10.1021/ja00140a028
L. Liu, A.A. Zhang, Y. Wang, et al., Org. Lett. 17 (2015) 2046–2049.
doi: 10.1021/acs.orglett.5b00122
Z.J. Du, J. Guan, G.J. Wu, et al., J. Am. Chem. Soc. 137 (2015) 632–635.
doi: 10.1021/ja512029x
Z.Q. Lin, W.Z. Wang, S.B. Yan, W.L. Duan, Angew. Chem. Int. Ed. 54 (2015) 6265–6269.
doi: 10.1002/anie.201500201
Y.S. Jang, M. Dieckmann, N. Cramer, Angew. Chem. Int. Ed. 56 (2017) 15088–15092.
doi: 10.1002/anie.201708440
Y. Sun, N. Cramer, Angew. Chem. Int. Ed. 56 (2017) 364–367.
doi: 10.1002/anie.201606637
Y.S. Jang, Ł. Woźniak, J. Pedroni, N. Cramer, Angew. Chem. Int. Ed. 57 (2018) 12901–12905.
doi: 10.1002/anie.201807749
G.R. Genov, J.L. Douthwaite, A.S.K. Lahdenperä, D.C. Gibson, R.J. Phipps, Science 367 (2020) 1246–1251.
doi: 10.1126/science.aba1120
P. Hu, L. Kong, F. Wang, X. Zhu, X. Li, Angew. Chem. Int. Ed. 60 (2021) 20424–20429.
doi: 10.1002/anie.202106871
S.Y. Song, Y. Li, Z. Ke, S. Xu, ACS Catal. 11 (2021) 13445–13451.
doi: 10.1021/acscatal.1c03888
C.W. Zhang, X.Q. Hu, Y.H. Dai, et al., ACS Catal. 12 (2022) 193–199.
doi: 10.1021/acscatal.1c05080
Q.J. Yao, J.H. Chen, H. Song, F.R. Huang, B.F. Shi, Angew. Chem. Int. Ed. 61 (2022) e202202892.
doi: 10.1002/anie.202202892
S.B. Yan, R. Wang, Z.G. Li, et al., Nature Commun. 14 (2023) 2264.
doi: 10.1038/s41467-023-37987-8
G. Zhou, J.H. Chen, Q.J. Yao, et al., Angew. Chem. Int. Ed. 62 (2023) e202302964.
doi: 10.1002/anie.202302964
Z.J. Chen, L.J. Fan, P.P. Xie, et al., Chem. Commun. 60 (2024) 1623–1626.
doi: 10.1039/d3cc05052a
K.C. Forbes, E.N. Jacobsen, Science 376 (2022) 1230–1236.
doi: 10.1126/science.abp8488
M. Formica, B. Ferko, T. Rogova, et al., Nat. Chem. 15 (2023) 714–721.
doi: 10.1038/s41557-023-01165-6
M. Formica, B. Ferko, T. Marsh, et al., Angew. Chem. Int. Ed. 63 (2024) e202400673.
doi: 10.1002/anie.202400673
L. Yin. H. Li, Chin. J. Org. Chem. 42 (2022) 3183–3200.
doi: 10.6023/cjoc202208002
K. Ding, B. Su, Eur. J. Org. Chem. 27 (2024) e202301160.
doi: 10.1002/ejoc.202301160
Y. Li, X. Jin, P. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202117093.
doi: 10.1002/anie.202117093
B. Liu, P. Liu, X. Wang, et al., Org. Lett. 25 (2023) 2178–2183.
doi: 10.1021/acs.orglett.3c00099
X.T. Liu, Y.Q. Zhang, X.Y. Han, S.P. Sun, Q.W. Zhang, J. Am. Chem. Soc. 141 (2019) 16584–16589.
doi: 10.1021/jacs.9b08734
Q. Zhang, X.T. Liu, Y. Wu, Q.W. Zhang, Org. Lett. 23 (2021) 8683–8687.
doi: 10.1021/acs.orglett.1c02986
Y. Huang, Y. Li, P.H. Leung, T. Hayashi, J. Am. Chem. Soc. 136 (2014) 4865–4868.
doi: 10.1021/ja501007t
L.B. Balázs, Y. Huang, J.B. Khalikuzzaman, et al., J. Org. Chem. 85 (2020) 14763–14771.
doi: 10.1021/acs.joc.0c00181
Y.B. Li, H. Tian, S. Zhang, J.Z. Xiao, L. Yin, Angew. Chem. Int. Ed. 61 (2022) e202117760.
doi: 10.1002/anie.202117760
R.D. Baechler, K. Mislow, J. Am. Chem. Soc. 92 (1970) 3090–3093.
doi: 10.1021/ja00713a028
B.D. Vineyard, W.S. Knowles, M.J. Sabacky, G.L. Bachman, D.J. Weinkauff, J. Am. Chem. Soc. 99 (1977) 5946–5952.
doi: 10.1021/ja00460a018
Y. Hayakawa, M. Hyodo, K. Kimura, M. Kataoka, Chem. Commun. (2003) 1704–1705.
J.F. Cavalier, F. Fotiadu, R. Verger, G. Buono, Synlett 1998 (1998) 73–75.
doi: 10.1055/s-1998-1560
B. Wolfe, T. Livinghouse, J. Am. Chem. Soc. 120 (1998) 5116–5117.
doi: 10.1021/ja973685k
M. Mikolajczyk, J. Drabowicz, J. Omelańczuk, E. Fluck, J. Chem. Soc., Chem. Commun. (1975) 382–383.
S. Humbel, C. Bertrand, C. Darcel, C. Bauduin, S. Jugé, Inorg. Chem. 42 (2003) 420–427.
doi: 10.1021/ic026128u
A.L. Featherston, Y. Kwon, M.M. Pompeo, et al., Science 371 (2021) 702–707.
doi: 10.1126/science.abf4359
M.L. Fields, D.D. Hemphill, Appl. Environ. Microbiol. 14 (1966) 724–731.
doi: 10.1128/am.14.5.724-731.1966
M. Eto, Biosci. Biotechnol. Biochem. 61 (1997) 1–11.
doi: 10.1271/bbb.61.1
S. Liu, Z. Zhang, F. Xie, et al., Tetrahedron Asymmetry 23 (2012) 329–332.
doi: 10.1016/j.tetasy.2012.02.018
D.A. Dirocco, Y. Ji, E.C. Sherer, et al., Science 356 (2017) 426–430.
doi: 10.1126/science.aam7936
M. Wang, L. Zhang, X. Huo, et al., Angew. Chem. Int. Ed. 59 (2020) 20814–20819.
doi: 10.1002/anie.202011527
V. Gannedi, B.K. Villuri, S.N. Reddy, et al., J. Org. Chem. 86 (2021) 4977–4985.
doi: 10.1021/acs.joc.0c02888
D.A. Glazier, J.M. Schroeder, S.A. Blaszczyk, W. Tang, Adv. Synth. Catal. 361 (2019) 3729–3732.
doi: 10.1002/adsc.201900382
F. Pertusati, C. Mcguigan, Chem. Commun. 51 (2015) 8070–8073.
doi: 10.1039/C5CC00448A
C.A. Roman, J. Balzarini, C. Meier, J. Med. Chem. 53 (2010) 7675–7681.
doi: 10.1021/jm100817f
C. Arbelo Román, P. Wasserthal, J. Balzarini, C. Meier, Eur. J. Org. Chem. 2011 (2011) 4899–4909.
doi: 10.1002/ejoc.201100614
B.S. Ross, P. Ganapati Reddy, H.R. Zhang, S. Rachakonda, M.J. Sofia, J. Org. Chem. 76 (2011) 8311–8319.
doi: 10.1021/jo201492m
S.S. Fang, X.J. Hu, M.H. Li, et al., J. Am. Chem. Soc. 146 (2024) 31339–31347.
doi: 10.1021/jacs.4c12920
Zhirong Yang , Shan Wang , Ming Jiang , Gengchen Li , Long Li , Fangzhi Peng , Zhihui Shao . One stone three birds: Ni-catalyzed asymmetric allenylic substitution of allenic ethers, hydroalkylation of 1,3-enynes and double alkylation of enynyl ethers. Chinese Chemical Letters, 2024, 35(8): 109518-. doi: 10.1016/j.cclet.2024.109518
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Jun Liu , Zhaoyu Feng , Renming Pan , Xiaolong Yu , Meijuan Zhou , Gang Zhao , Hongyu Wang . Enantioselective regulation to coronal polyheterocyclic compounds via phosphonium salt-catalyzed cycloadditions of azomethine imines with γ-butenolides. Chinese Chemical Letters, 2025, 36(8): 110647-. doi: 10.1016/j.cclet.2024.110647
Yanxin Jiang , Kwai Wun Cheng , Zhiping Yang , Jun (Joelle) Wang . Pd-catalyzed enantioselective and regioselective asymmetric hydrophosphorylation and hydrophosphinylation of enynes. Chinese Chemical Letters, 2025, 36(5): 110231-. doi: 10.1016/j.cclet.2024.110231
Guang Xu , Cuiju Zhu , Xiang Li , Kexin Zhu , Hao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114
Xiaohui Fu , Yanping Zhang , Juan Liao , Zhen-Hua Wang , Yong You , Jian-Qiang Zhao , Mingqiang Zhou , Wei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688
Ji-Jia Zhou , Li-Gao Liu , Zhen-Tao Zhang , Hao-Xuan Dong , Xin Lu , Zhou Xu , Xin-Qi Zhu , Bo Zhou , Long-Wu Ye . Copper-catalyzed asymmetric cascade diyne cyclization/Meinwald rearrangement. Chinese Chemical Letters, 2025, 36(9): 110870-. doi: 10.1016/j.cclet.2025.110870
Xingfen Huang , Jiefeng Zhu , Chuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783
Yuemin Chen , Yunqi Wu , Guoao Wang , Feihu Cui , Haitao Tang , Yingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445
Chengyao Zhao , Jingyuan Liao , Yuxiang Zhu , Yiying Zhang , Lianjie Zhai , Junrong Huang , Hengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337
Kai Zhu , Lei Yang , Yang Yang , Yanqi Wu , Fengzhi Zhang . Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes. Chinese Chemical Letters, 2025, 36(7): 110678-. doi: 10.1016/j.cclet.2024.110678
Guodong Wang , Mengying Jia , Haitao Liu , Yong Liu , Zhiguo Zhang , Xianxiu Xu . Expeditious synthesis and applications of isoquinoline ring-modified Quinap derivatives. Chinese Chemical Letters, 2025, 36(8): 110705-. doi: 10.1016/j.cclet.2024.110705
Ya-Ling Li , Jia-Wei Ke , Yue Liu , Dong-Mei Yao , Jing-Dong Zhang , You-Cai Xiao , Fen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377
Ruilong Geng , Lingzi Peng , Chang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433
Ruixue Liu , Xiaobing Ding , Qiwei Lang , Gen-Qiang Chen , Xumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074