Metallic cobalt mediated molybdenum nitride for efficient glycerol upgrading with water electrolysis
-
* Corresponding authors.
E-mail addresses: binhe@zjhu.edu.cn (B. He), pzchen@zstu.edu.cn (P. Chen).
Citation:
Yiming Guo, Zhouhong Yu, Bin He, Pengzuo Chen. Metallic cobalt mediated molybdenum nitride for efficient glycerol upgrading with water electrolysis[J]. Chinese Chemical Letters,
;2025, 36(9): 111010.
doi:
10.1016/j.cclet.2025.111010
L. Hou, X. Peng, S. Lyu, et al., Chin. Chem. Lett. 36 (2025) 110392.
doi: 10.1016/j.cclet.2024.110392
J. Yu, Y. Zhang, N. Zhang, et al., Chin. Chem. Lett. (2025), doi: 10.1016/j.cclet.2025.110830.
doi: 10.1016/j.cclet.2025.110830
G. Zhang, Y. Gu, L. Li, et al., Chin. Chem. Lett. 36 (2025) 110110.
doi: 10.1016/j.cclet.2024.110110
X. Ren, C. Lin, G. Zhou, et al., J. Colloid Interf. Sci. 676 (2024) 13–21.
doi: 10.1016/j.jcis.2024.07.097
X. Ren, Q. Zhang, Y. Tong, et al., J. Energy Chem. 101 (2025) 7–15.
doi: 10.1016/j.jechem.2024.09.033
X. Ren, Y. Tong, Int. J. Hydrogen Energy 49 (2024) 489–497.
doi: 10.1016/j.ijhydene.2023.08.109
X. Wang, Z. Li, Y. Tang, et al., Chem. Eng. J. 500 (2024) 156977.
doi: 10.1016/j.cej.2024.156977
Z. Yuan, X. Sun, B. Gao, et al., Chem. Eng. J. 499 (2024) 156647.
doi: 10.1016/j.cej.2024.156647
H. Ma, Y. Yang, X. Yu, Y. Zhao, J. Ma, Cheng, Chem. Sci. 15 (2024) 20457–20466.
doi: 10.1039/d4sc06732k
K. Li, B. Xie, D. Feng, Y. Tong, ChemSusChem 15 (2022) e202201656.
doi: 10.1002/cssc.202201656
D. Feng, X. Ren, Y. Tong, Int. J. Hydrogen Energy 48 (2023) 34244–34254.
doi: 10.1016/j.ijhydene.2023.05.229
Q.Q. Pang, X.Z. Fan, S.S. Yi, et al., Chem. Eng. J. 500 (2024) 157270.
doi: 10.1016/j.cej.2024.157270
X. Cheng, Y. Tong, ACS Sustain. Chem. Eng. 11 (2023) 3219–3227.
doi: 10.1021/acssuschemeng.2c05636
Q. Qian, X. He, Z. Li, et al., Adv. Mater. 35 (2023) 2300935.
doi: 10.1002/adma.202300935
Y. Feng, X. He, M. Cheng, et al., Small 19 (2023) 2301986.
S. Wang, Y. Yan, Y. Du, et al., Adv. Funct. Mater. 34 (2024) 2404290.
doi: 10.1002/adfm.202404290
S. Zhong, B. He, S. Wei, et al., Appl. Catal. B: Environ. Energy 362 (2025) 124743.
doi: 10.1016/j.apcatb.2024.124743
S. Angizi, M. Nankali, A. Foroozan, et al., Adv. Funct. Mater. 35 (2025) 2420622.
doi: 10.1002/adfm.202420622
B. Deng, J. Shen, J. Lu, et al., J. Energy Chem. 100 (2025) 317–326.
doi: 10.1016/j.jechem.2024.08.056
Q. Wen, J. Duan, W. Wang, Angew. Chem. Int. Ed. 61 (2022) e202206077.
doi: 10.1002/anie.202206077
Y. Lin, D. Huang, Q. Wen, Proc. Natl. Acad. Sci. U. S. A. 121 (2024) e2407350121.
doi: 10.1073/pnas.2407350121
J. Huang, Z. Zhuang, Y. Zhao, Angew. Chem. Int. Ed. 61 (2022) e202203522.
doi: 10.1002/anie.202203522
J. Li, X. Meng, X. Song, et al., Adv. Funct. Mater. 34 (2024) 2316718.
doi: 10.1002/adfm.202316718
Y. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 10 (2019) 5335.
doi: 10.1109/cac48633.2019.8997045
Y. Xu, M. Liu, S. Wang, et al., Appl. Catal. B: Environ. 298 (2021) 120493.
doi: 10.1016/j.apcatb.2021.120493
Y. Zhu, Q. Qian, Y. Chen, et al., Cheng Adv. Funct. Mater. 33 (2023) 2300547.
doi: 10.1002/adfm.202300547
Y. Zheng, Z. Kang, H. Li, et al., Adv. Funct. Mater. 35 (2024) 2412810.
F. Kong, A. Wu, S. Wang, et al., Nano Res. 16 (2023) 10857–10866.
doi: 10.1007/s12274-023-5878-5
X.L. Zhang, P.C. Yu, S.P. Sun, et al., Nat. Commun. 15 (2024) 9462.
doi: 10.1038/s41467-024-53724-1
D. Yang, T. Lv, J. Song, et al., Chem. Eng. J. 496 (2024) 153844.
doi: 10.1016/j.cej.2024.153844
Y. Pan, D. Yang, C. Luo, et al., J. Energy Stor. 95 (2024) 112430.
doi: 10.1016/j.est.2024.112430
J. Song, S. Ke, P. Sun, et al., Nanoscale 15 (2023) 13790–13808.
doi: 10.1039/d3nr02723f
J. Sun, W. Xu, C. Lv, et al., Appl. Catal. B: Environ. 286 (2021) 119882.
doi: 10.1016/j.apcatb.2021.119882
Y. Qiu, J. Liu, M. Sun, et al., Chin. J. Struct. Chem. 41 (2022) 2207040.
X. Shen, H. Li, T. Ma, et al., Small 20 (2024) 2310535.
doi: 10.1002/smll.202310535
Y. Tong, L. Chen, P.J. Dyson, Z. Fei, J. Mater. Sci. 56 (2021) 17709–17720.
doi: 10.1007/s10853-021-06391-2
D. Feng, X.Y. Liu, R. Ye, W. Huang, Y. Tong, J. Colloid Interf. Sci. 634 (2023) 693–702.
doi: 10.1016/j.jcis.2022.12.068
K. Li, X. Cen, J. He, Y. Tong, Chem. Commun. 59 (2023) 5575–5578.
doi: 10.1039/d3cc00931a
H. Wang, X. Cheng, Y. Tong, J. Colloid Interf. Sci. 629 (2023) 155–164.
doi: 10.1016/j.jcis.2022.08.147
D. Feng, S. Zhang, Y. Tong, X. Dong, J. Colloid Interf. Sci. 623 (2022) 467–475.
doi: 10.1016/j.jcis.2022.05.027
Y. Guo, G. Zhou, Y. Tong, Dalt. Trans. 52 (2023) 12733–12741.
doi: 10.1039/d3dt01786a
X. Cheng, Y. Tong, ACS Appl. Energy Mater. 6 (2023) 9577–9584.
doi: 10.1021/acsaem.3c01599
K. Li, D. Feng, Y. Tong, ChemSusChem 15 (2022) e202200590.
doi: 10.1002/cssc.202200590
K. Li, Y. Tong, ChemCatChem 14 (2022) e202201047.
doi: 10.1002/cctc.202201047
T.G. Vo, P.Y. Ho, C.Y. Chiang, Appl. Catal. B: Environ. 300 (2022) 120723.
doi: 10.1016/j.apcatb.2021.120723.2016.02.008
Y. Guo, Y. Tong, G. Zhou, et al., Chem. Eng. J. 496 (2024) 154220.
doi: 10.1016/j.cej.2024.154220
J. He, Y. Tong, Z. Wang, et al., Proc. Natl. Acad. Sci. 121 (2024) e2405846121.
doi: 10.1073/pnas.2405846121
Y. Yan, H. Zhou, S.-M. Xu, et al., J. Am. Chem. Soc. 145 (2023) 6144–6155.
doi: 10.1021/jacs.2c11861
N. Lyu, Y. Chen, A. Guan, et al., Small 20 (2024) 2401872.
doi: 10.1002/smll.202401872
G. Zhou, N. Zhang, Z. Huang, et al., Chem. Eng. J. 503 (2025) 158619.
doi: 10.1016/j.cej.2024.158619
J. Wu, X. Cheng, Y. Tong, et al., ACS Catal. 14 (2024) 18095–18106.
doi: 10.1021/acscatal.4c05434
Y. Ma, Y. Ha, L. Chen, et al., Small 20 (2024) 2311884.
doi: 10.1002/smll.202311884
B. Fang, J. Jin, Y. Li, et al., Small 20 (2024) 2310825.
doi: 10.1002/smll.202310825
Y. Wen, J. Qi, P. Wei, X. Kang, X. Li, J. Mater. Chem. A 9 (2021) 10260–10269.
doi: 10.1039/d1ta00885d
G. Zhou, H. Cheng, Y. Wu, et al., Angew. Chem. Int. Ed. 64 (2025) e202420353.
doi: 10.1002/anie.202420353
G. Zhou, N. Zhang, H. Huang, et al., Chem. Eng. J. 503 (2025) 158619.
doi: 10.1016/j.cej.2024.158619
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Yixin Lu , Minghan Qin , Shixian Zhang , Zhen Liu , Wang Sun , Zhenhua Wang , Jinshuo Qiao , Kening Sun . Triple-conducting heterostructure anodes for electrochemical ethane nonoxidative dehydrogenation by protonic ceramic electrolysis cells. Chinese Chemical Letters, 2025, 36(4): 110567-. doi: 10.1016/j.cclet.2024.110567
Hui Li , Chunlang Gao , Guo Yang , Lu Xia , Wulyu Jiang , Cheng Wu , Kaiwen Wang , Yingtang Zhou , Xiaodong Han . Enhanced photocatalytic CO2 reduction of Bi2WO6-BiOCl heterostructure with coherent interface for charge utilization. Chinese Chemical Letters, 2025, 36(9): 110547-. doi: 10.1016/j.cclet.2024.110547
Zhuo Li , Peng Yu , Di Shen , Xinxin Zhang , Zhijian Liang , Baoluo Wang , Lei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713
Ming Zhong , Xue Guo , Yang Liu , Kun Zhao , Hui Peng , Suijun Liu , Xiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Qing Li , Yumei Feng , Yingjie Yu , Yazhou Chen , Yuhua Xie , Fang Luo , Zehui Yang . Engineering eg filling of RuO2 enables a robust and stable acidic water oxidation. Chinese Chemical Letters, 2025, 36(3): 110612-. doi: 10.1016/j.cclet.2024.110612
Qing Li , Yumei Feng , Yuhua Xie , Qi Xu , Yifei Li , Yingjie Yu , Fang Luo , Zehui Yang . MOF derived RuO2/V2O5 nanoneedles for robust and stable water oxidation in acid. Chinese Chemical Letters, 2025, 36(7): 111074-. doi: 10.1016/j.cclet.2025.111074
Dai-Huo Liu , Ao Wang , Hong-Yan Lü , Xing-Long Wu , Dan Luo , Wen-Hao Li , Jin-Zhi Guo , Haozhen Dou , Qianyi Ma , Zhongwei Chen . In situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285
Chang Liu , Zirui Song , Xinglan Deng , Shihong Xu , Renji Zheng , Wentao Deng , Hongshuai Hou , Guoqiang Zou , Xiaobo Ji . Interfacial/bulk synergetic effects accelerating charge transferring for advanced lithium-ion capacitors. Chinese Chemical Letters, 2024, 35(6): 109081-. doi: 10.1016/j.cclet.2023.109081
Jiayu Bai , Songjie Hu , Lirong Feng , Xinhui Jin , Dong Wang , Kai Zhang , Xiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326
Guo Yang , Kai Li , Hanshi Qu , Jianbing Zhu , Chunyu Ru , Meiling Xiao , Wei Xing , Changpeng Liu . Tailoring OH* adsorption strength on Ni/NbOx for boosting alkaline hydrogen oxidation reaction via oxygen vacancy. Chinese Chemical Letters, 2025, 36(7): 110150-. doi: 10.1016/j.cclet.2024.110150
Xuanyang Jin , Xincheng Guo , Siyang Dong , Shilan Li , Shengdong Jin , Peng Xia , Shengjun Lu , Yufei Zhang , Haosen Fan . Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries. Chinese Chemical Letters, 2025, 36(7): 110604-. doi: 10.1016/j.cclet.2024.110604
Bin Feng , Tao Long , Ruotong Li , Yuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273
Guo-Hong Gao , Run-Ze Zhao , Ya-Jun Wang , Xiao Ma , Yan Li , Jian Zhang , Ji-Sen Li . Core–shell heterostructure engineering of CoP nanowires coupled NiFe LDH nanosheets for highly efficient water/seawater oxidation. Chinese Chemical Letters, 2024, 35(8): 109181-. doi: 10.1016/j.cclet.2023.109181
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Minglei Sun , Zhong-Yong Yuan . Valorization strategies for electrodegradation of nitrogenous wastes in sewage. Acta Physico-Chimica Sinica, 2025, 41(9): 100108-0. doi: 10.1016/j.actphy.2025.100108
Wen-Jing Li , Jun-Bo Wang , Yu-Heng Liu , Mo Zhang , Zhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001
Xiuzheng Deng , Yi Ke , Jiawen Ding , Yingtang Zhou , Hui Huang , Qian Liang , Zhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064