Citation: Tingting Du, Siyu Lu, Zongnan Zhu, Mei Zhu, Yan Zhang, Jian Zhang, Jixiang Chen. Pyrazole derivatives: Recent advances in discovery and development of pesticides[J]. Chinese Chemical Letters, ;2025, 36(9): 110912. doi: 10.1016/j.cclet.2025.110912 shu

Pyrazole derivatives: Recent advances in discovery and development of pesticides

    * Corresponding authors.
    E-mail addresses: jianzhang@gzu.edu.cn (J. Zhang), 18230826028@163.com (J. Chen).
  • Received Date: 25 October 2024
    Revised Date: 20 January 2025
    Accepted Date: 3 February 2025
    Available Online: 4 February 2025

Figures(22)

  • Pyrazole derivatives have made impressive achievements in the discovery of new pesticides, especially novel fungicides, insecticides, and herbicides. The pyrazole ring containing two adjacent nitrogen atoms is an important active fragment, which showed broad-spectrum and efficient biological activities. With the great interest and focus on pyrazoles, it is necessary to keep up-to-date with the latest research progress on pyrazole derivatives in the discovery of new pesticides. Based on this, we reviewed the progress and applications of pyrazole derivatives in the discovery of fungicides, antibacterial agents, insecticides, herbicides, antiviral agents, and nematicides in the past decade, summarized the fungicidal, antibacterial, insecticidal, herbicidal, antiviral, and nematicidal activities of pyrazoles, as well as the synthetic methods of the representative compounds. We also discussed the structure-activity relationship (SAR) and mechanism of action of the active compounds, aiming to provide new clues and ideas for the search of new pyrazole pesticides with high efficiency, low toxicity, and unique mechanism of action.
  • 加载中
    1. [1]

      E.Y. Jiang, O. Sukhbaatar, M.Z. Zhang, et al., Adv. Agrochem. 3 (2024) 111–114.  doi: 10.1016/j.aac.2024.01.006

    2. [2]

      C. Agrimonti, M. Lauro, G. Visioli, et al., Crit. Rev. Food Sci. Nutr. 61 (2021) 971–981.  doi: 10.1080/10408398.2020.1749555

    3. [3]

      M. Tudi, H.D. Ruan, L. Wang, et al., Int. J. Environ. Res. Public Health. 18 (2021) 1112.  doi: 10.3390/ijerph18031112

    4. [4]

      S. Yang, J.H. Tang, H.X. Peng, et al., Pest Manag. Sci. 79 (2023) 5260–5269.  doi: 10.1002/ps.7734

    5. [5]

      S.S. Gangurde, A. Xavier, Y.D. Naik, et al., Front. Plant Sci. 13 (2022) 1064059.  doi: 10.3389/fpls.2022.1064059

    6. [6]

      S.K. Sharma, A.S.R. Paniraj, Y.B. Tambe, J. Agric. Food Chem. 69 (2021) 14761–14780.  doi: 10.1021/acs.jafc.1c05553

    7. [7]

      S.L. Wang, Y.J. Shi, H.B. He, et al., Chin. Chem. Lett. 26 (2015) 672–674.  doi: 10.1016/j.cclet.2015.04.017

    8. [8]

      R.M. Zaki, Y.A. El-Ossaily, A.A. Geies, J. Heterocycl. Chem. 57 (2020) 653–662.  doi: 10.1002/jhet.3805

    9. [9]

      Z.Z. Yan, A.P. Liu, M.Z. Huang, et al., Eur. J. Med. Chem. 149 (2018) 170–181.  doi: 10.1016/j.ejmech.2018.02.036

    10. [10]

      J. Sowdari, Y. Gudi, S.V. Donthamsetty, et al., J. Heterocycl. Chem. 56 (2019) 2080–2089.  doi: 10.1002/jhet.3569

    11. [11]

      J.X. Yang, D.W. Xie, C.Z. Zhang, et al., Arab. J. Chem. 15 (2022) 103987.  doi: 10.1016/j.arabjc.2022.103987

    12. [12]

      A.K. Pathak, S. Gupta, P.B. Punjabi, et al., J. Heterocycl. Chem. 56 (2019) 2056–2062.  doi: 10.1002/jhet.3587

    13. [13]

      L.G. Yu, T.F. Ni, W. Gao, et al., Eur. J. Med. Chem. 90 (2015) 10–20.  doi: 10.1016/j.ejmech.2014.11.015

    14. [14]

      L. Ruiu, Agronomy-Basel. 10 (2020) 861.  doi: 10.3390/agronomy10060861

    15. [15]

      C.B. Sangani, J.A. Makwana, Y.T. Duan, et al., Res. Chem. Intermed. 41 (2015) 10137–10149.  doi: 10.1007/s11164-015-2018-1

    16. [16]

      Y. Chen, Z.W. Lei, Y. Zhang, et al., Molecules 22 (2017) 1058.  doi: 10.3390/molecules22071058

    17. [17]

      Z.B. Wu, X. Zhou, Y.Q. Ye, et al., Chin. Chem. Lett. 28 (2017) 121–125.  doi: 10.3390/app7020121

    18. [18]

      W.M. Zhang, C.W. Holyoke, T.F. Pahutski, et al., Bioorg. Med. Chem. Lett. 27 (2017) 16–20.  doi: 10.1016/j.bmcl.2016.11.042

    19. [19]

      R.G. Yang, T. Xu, J.P. Fan, et al., Ind. Crop. Prod. 117 (2018) 50–57.  doi: 10.1016/j.indcrop.2018.02.088

    20. [20]

      C.C. Fei, Y.F. Chen, Z.Y. Jiang, et al., Bioorg. Med. Chem. Lett. 28 (2018) 1792–1796.  doi: 10.1016/j.bmcl.2018.04.022

    21. [21]

      R.G. Yang, M. Lv, H. Xu, J. Agric. Food Chem. 66 (2018) 11254–11264.  doi: 10.1021/acs.jafc.8b03690

    22. [22]

      L. Bai, C.L. Wei, Z.J. Shen, et al., J. Agric. Food Chem. 71 (2023) 7239–7249.  doi: 10.1021/acs.jafc.3c01005

    23. [23]

      G.Y. Yang, J.M. Dai, Q.L. Mi, et al., Phytochemistry 198 (2022) 113137.  doi: 10.1016/j.phytochem.2022.113137

    24. [24]

      S.A. Abdel-Mohsen, T.I. El-Emary, H.S. El-Kashef, Chem. Pharm. Bull. 64 (2016) 476–482.  doi: 10.1248/cpb.c16-00044

    25. [25]

      F. Cheng, D.Q. Shi, J. Heterocycl. Chem. 49 (2012) 732–736.  doi: 10.1002/jhet.790

    26. [26]

      H.J. Ma, J.H. Zhang, X.D. Xia, et al., Pest Manag. Sci. 70 (2014) 946–952.  doi: 10.1002/ps.3633

    27. [27]

      J. Kang, X.L. Yue, C.S. Chen, et al., Molecules 21 (2016) 39.  doi: 10.13064/KSSS.2016.8.4.039

    28. [28]

      X.H. Song, N. Ma, J.G. Wang, et al., J. Heterocycl. Chem. 50 (2013) E67–E72.

    29. [29]

      X.Q. Li, C. Bao, D.B. Yang, et al., Environ. Toxicol. Chem. 29 (2010) 127–132.  doi: 10.1002/etc.17

    30. [30]

      P.G.P. Martin, V. Dupouy, J. Leghait, et al., Toxicol. Appl. Pharmacol. 389 (2020) 114873.  doi: 10.1016/j.taap.2019.114873

    31. [31]

      X.Y. Zeng, Y.R. Huang, J. Dong, et al., Adv. Agrochem. 1 (2022) 73–84.  doi: 10.1016/j.aac.2022.08.001

    32. [32]

      K. Ueda, T. Nagai, J. Pestic. Sci. 46 (2021) 267–273.  doi: 10.1584/jpestics.d21-018

    33. [33]

      F.S. Dong, X. Chen, J. Xu, et al., Chirality 25 (2013) 904–909.  doi: 10.1002/chir.22232

    34. [34]

      F.S. Dong, X. Chen, X.G. Liu, et al., J. Chromatogr. A 1262 (2012) 98–106.  doi: 10.1016/j.chroma.2012.08.100

    35. [35]

      S. Fustero, M. Sanchez-Rosello, P. Barrio, et al., Chem. Rev. 111 (2011) 6984–7034.  doi: 10.1021/cr2000459

    36. [36]

      A. Mohammad-Razdari, D. Rousseau, A. Bakhshipour, et al., Biosens. Bioelectron. 201 (2022) 113953.  doi: 10.1016/j.bios.2021.113953

    37. [37]

      L. Li, X.M. Zhu, Y.R. Zhang, et al., Int. J. Mol. Sci. 23 (2022) 4658.  doi: 10.3390/ijms23094658

    38. [38]

      Y. Jiang, C.H. Zhu, Z.H. Xia, et al., Adv. Agrochem. 3 (2024) 222–228.  doi: 10.1016/j.aac.2023.11.003

    39. [39]

      H. Sang, J.I. Kim, Plant Biotechnol. Rep. 14 (2020) 1–8.  doi: 10.1007/s11816-019-00588-3

    40. [40]

      D.Y. Yang, B. Zhao, Z.J. Fan, et al., J. Agric. Food Chem. 67 (2019) 13185–13194.  doi: 10.1021/acs.jafc.9b05751

    41. [41]

      P. Desbordes, B. Essigmann, S. Gary, et al., Pest Manag. Sci. 76 (2020) 3340–3347.  doi: 10.1002/ps.5951

    42. [42]

      S.Q. Li, X.S. Li, H.M. Zhang, et al., Bioorg. Med. Chem. 50 (2021) 116476.

    43. [43]

      J.W. Wang, T. Lu, T.T. Xiao, et al., Pest Manag. Sci. 79 (2023) 3425–3438.  doi: 10.1002/ps.7332

    44. [44]

      H. Li, Y.X. Wang, X.L. Zhu, et al., J. Agric. Food Chem. 69 (2021) 13227–13234.  doi: 10.1021/acs.jafc.1c04536

    45. [45]

      Y.B. Bai, Y.Q. Gao, X.D. Nie, et al., J. Agric. Food Chem. 67 (2019) 6125–6132.  doi: 10.1021/acs.jafc.9b00606

    46. [46]

      Z.S. Hao, B. Yu, W. Gao, et al., Mol. Divers. 26 (2022) 205–214.  doi: 10.1007/s11030-020-10177-0

    47. [47]

      X.B. Wang, A. Wang, L.L. Qu, et al., J. Agric. Food Chem. 68 (2020) 14426–14437.  doi: 10.1021/acs.jafc.0c03736

    48. [48]

      W. Wang, J.H. Wang, F.R. Wu, et al., J. Agric. Food Chem. 69 (2021) 5746–5754.  doi: 10.1021/acs.jafc.0c08094

    49. [49]

      E.Y. Hou, M.Y. Han, X.G. Wang, et al., Chem. Biodivers. 19 (2022) e2100779.

    50. [50]

      C.Z. Zhang, J.X. Yang, C.L. Zhao, et al., J. Agric. Food Chem. 71 (2023) 1862–1872.  doi: 10.1021/acs.jafc.2c06962

    51. [51]

      P.F. Zhang, A.Y. Guan, X.L. Xia, et al., J. Agric. Food Chem. 67 (2019) 11893–11900.  doi: 10.1021/acs.jafc.9b05185

    52. [52]

      S. Zhang, S.Q. Meng, Y. Xie, et al., Molecules 24 (2019) 2607.  doi: 10.3390/molecules24142607

    53. [53]

      D.G. Xia, X. Cheng, X.H. Liu, et al., J. Agric. Food Chem. 69 (2021) 8358–8365.  doi: 10.1021/acs.jafc.1c01189

    54. [54]

      L. Qiao, Z.W. Zhai, P.P. Cai, et al., J. Heterocycl. Chem. 56 (2019) 2536–2541.  doi: 10.1002/jhet.3648

    55. [55]

      X.H. Liu, L. Qiao, Z.W. Zhai, et al., Pest Manag. Sci. 75 (2019) 2892–2900.  doi: 10.1002/ps.5463

    56. [56]

      Y.H. Huang, G. Wei, Z. Liu, et al., J. Agric. Food Chem. 70 (2022) 14480–14487.  doi: 10.1021/acs.jafc.2c04770

    57. [57]

      Z.W. Lei, J.M. Yao, H.F. Liu, et al., Curr. Issues Mol. Biol. 44 (2022) 5605–5621.  doi: 10.3390/cimb44110380

    58. [58]

      C.T. Dong, W. Gao, X.T. Li, et al., Mol. Divers. 25 (2021) 2379–2388.  doi: 10.1007/s11030-020-10127-w

    59. [59]

      J. Jiao, M. Chen, S.X. Sun, et al., Chin. J. Chem. 39 (2021) 323–329.  doi: 10.1002/cjoc.202000438

    60. [60]

      X.B. Wang, M.Q. Wang, L. Han, et al., J. Agric. Food Chem. 69 (2021) 9557–9570.  doi: 10.1021/acs.jafc.1c03399

    61. [61]

      S.S. Sun, L. Chen, J.Q. Huo, et al., J. Agric. Food Chem. 70 (2022) 3447–3457.  doi: 10.1021/acs.jafc.2c00092

    62. [62]

      A. Titi, R. Touzani, A. Moliterni, et al., J. Mol. Struct. 1264 (2022) 133156.  doi: 10.1016/j.molstruc.2022.133156

    63. [63]

      Z.H. Yang, Q.S. Liu, Y. Sun, et al., Chin. J. Struct. Chem. 41 (2022) 2203253.

    64. [64]

      W.J. Jiang, T.T. Zhang, J.W. Wang, et al., J. Agric. Food Chem. 71 (2023) 729–738.  doi: 10.1021/acs.jafc.2c05054

    65. [65]

      B. Luo, Y.C. Zhao, J. Zhang, et al., J. Agric. Food Chem. 71 (2023) 9255–9265.  doi: 10.1021/acs.jafc.3c00116

    66. [66]

      Y.T. Li, H. Yang, Y.D. Ma, et al., J. Agric. Food Chem. 71 (2023) 17700–17712.  doi: 10.1021/acs.jafc.3c04869

    67. [67]

      B. Luo, W. Zhou, X.A. Zhang, et al., J. Mol. Struct. 1292 (2023) 136202.

    68. [68]

      C. Yi, J. Chen, D. Hu, et al., Pestic. Biochem. Physiol. 169 (2020) 104645.

    69. [69]

      J. Peng, Y. Zhang, X. Liu, et al., Pestic. Biochem. Phyiol, 193 (2023) 105457.

    70. [70]

      J. Xiang, D. Liu, J. Chen, et al., Pestic. Biochem. Phyiol, 170 (2020) 104695.

    71. [71]

      Y.T. Zheng, T.T. Zhang, P.Y. Wang, et al., Chin. Chem. Lett. 28 (2017) 253–256.

    72. [72]

      X. Wang, X.Y. Wang, B.H. Zhou, et al., J. Heterocycl. Chem. 58 (2021) 2109–2116.  doi: 10.1002/jhet.4334

    73. [73]

      F. Liu, X. Cao, T. Zhang, et al., Int. J. Mol. Sci. 24 (2023) 10442.  doi: 10.3390/ijms241310442

    74. [74]

      L. Zhou, P.Y. Wang, J. Zhou, et al., J. Saudi Chem. Soc. 21 (2017) 852–860.  doi: 10.1016/j.jscs.2017.04.005

    75. [75]

      S. Savary, A. Ficke, J.N. Aubertot, et al., Food Secur. 4 (2012) 519–537.  doi: 10.1007/s12571-012-0200-5

    76. [76]

      M.P. Zalucki, A. Shabbir, R. Silva, et al., J. Econ. Entomol. 105 (2012) 1115–1129.

    77. [77]

      P. Kljajic, G. Andric, M.P. Golic, J. Stored Prod. Res. 103 (2023) 102156.

    78. [78]

      A. Khan, G. Ahmad, M. Haris, et al., Gesunde Pflanz. 75 (2023) 193–209.  doi: 10.1007/s10343-022-00679-2

    79. [79]

      P. Zhang, C.B. Duan, B. Jin, et al., Adv. Agrochem. 2 (2023) 324–339.

    80. [80]

      S.D. Buckingham, M. Ihara, D.B. Sattelle, et al., Curr. Med. Chem. 24 (2017) 2935–2945.

    81. [81]

      Y.Y. Zhou, W. Wei, L.L. Zhu, et al., Chin. J. Chem. 37 (2019) 605–610.  doi: 10.1002/cjoc.201900073

    82. [82]

      Q.Q. Zhao, R.F. Sun, Y.X. Liu, et al., Bioorg. Med. Chem. 27 (2019) 115092.

    83. [83]

      B.L. Wang, H.X. Wang, H. Liu, et al., Chin. Chem. Lett. 31 (2020) 739–745.

    84. [84]

      Y.Y. Zhao, H.G. Li, P.W. Sun, et al., Bioorg. Med. Chem. Lett. 30 (2020) 127535.

    85. [85]

      S. Yang, H.X. Peng, J.Y. Zhu, et al., J. Heterocycl. Chem. 59 (2022) 1366–1375.  doi: 10.1002/jhet.4476

    86. [86]

      L.K. Zhong, X.P. Sun, L. Han, et al., J. Agric. Food Chem. 71 (2023) 14458–14470.  doi: 10.1021/acs.jafc.3c01608

    87. [87]

      H.Q. He, X.J. Qin, F.Y. Dong, et al., Sci Rep. 10 (2020) 17999.

    88. [88]

      X.A. Cheng, F.Y. Dong, J.J. Li, et al., Pestic. Biochem. Physiol. 194 (2023) 105489.

    89. [89]

      Q.B. Li, M. Liao, Q. Liu, et al., Molecules 24 (2019) 562.

    90. [90]

      Y.Y. Zhao, L. Gao, H.G. Li, et al., J. Agric. Food Chem. 68 (2020) 11282–11289.  doi: 10.1021/acs.jafc.9b08090

    91. [91]

      S. Yang, K.J. Xu, Q.Q. Lai, et al., J. Heterocycl. Chem. 57 (2020) 4304–4311.  doi: 10.1002/jhet.4136

    92. [92]

      P.W. Sun, Z. Zhang, L.S. Li, et al., J. Heterocycl. Chem. 59 (2022) 820–831.  doi: 10.1002/jhet.4422

    93. [93]

      G.K. Yao, M.F. Wang, B.J. Li, et al., Pest Manag. Sci. 79 (2023) 1164–1174.  doi: 10.1002/ps.7287

    94. [94]

      S. Yang, H.X. Peng, J.H. Tang, et al., Agronomy-Basel. 12 (2022) 2472.  doi: 10.3390/agronomy12102472

    95. [95]

      J.Z. Ren, X. Ji, W. Gao, et al., J. Agric. Food Chem. 71 (2023) 4258–4271.  doi: 10.1021/acs.jafc.2c08719

    96. [96]

      S. Yang, B.J. Li, J.H. Tang, et al., Pestic. Biochem. Physiol. 195 (2023) 105533.

    97. [97]

      Z.W. Wang, P. Wei, X.Z. Xu, et al., J. Agric. Food Chem. 60 (2012) 8544–8551.  doi: 10.1021/jf302746m

    98. [98]

      J.X. Chen, Y. Wang, X. Luo, et al., Pestic. Biochem. Physiol. 184 (2022) 105122.

    99. [99]

      M. Rabie, C. Ratti, M. Calassanzio, et al., Eur. J. Plant Pathol. 149 (2017) 219–225.  doi: 10.1007/s10658-017-1164-2

    100. [100]

      E. Monreal-Escalante, B. Banuelos-Hernandez, M. Hernandez, et al., Mol. Biotechnol. 57 (2015) 635–643.  doi: 10.1007/s12033-015-9853-6

    101. [101]

      W.B. Shao, Y.M. Liao, R.S. Luo, et al., Pest Manag. Sci. 79 (2023) 4231–4243.

    102. [102]

      Z.B. Wu, W.Q. Yang, S.T. Hou, et al., Pestic. Biochem. Physiol. 173 (2021) 104771.

    103. [103]

      Z.B. Yang, P. Li, X.H. Gan, Molecules 23 (2018) 1798.  doi: 10.3390/molecules23071798

    104. [104]

      G.Q. Yang, H.L. Zheng, W.B. Shao, et al., Pestic. Biochem. Physiol. 171 (2021) 104740.

    105. [105]

      X.Y. Li, S. Liu, Q.J. Wang, et al., Plant Signal. Behav. 14 (2019) e1621089.

    106. [106]

      Y. Xie, X.H. Ruan, H.Y. Gong, et al., J. Heterocycl. Chem. 54 (2017) 2644–2649.  doi: 10.1002/jhet.2862

    107. [107]

      J.J. Xiao, M. Liao, M.J. Chu, et al., Molecules 20 (2015) 807–821.  doi: 10.3390/molecules20010807

    108. [108]

      X.H. Lv, Z.L. Ren, D.D. Li, et al., Chin. Chem. Lett. 28 (2017) 377–382.

    109. [109]

      Y.Y. Wang, F.Z. Xu, Y.Y. Zhu, et al., Bioorg. Med. Chem. Lett. 28 (2018) 2979–2984.

    110. [110]

      D. Hu, N. Zhang, Q. Zhou, et al., Fitoterapia 166 (2023) 105458.

    111. [111]

      S.S. Ramanathan, T.W. Gannon, W.J. Everman, et al., Agron. J. 114 (2022) 1068–1079.  doi: 10.1002/agj2.21041

    112. [112]

      S.E. McComic, S.O. Duke, E.R. Burgess, et al., Pestic. Biochem. Physiol. 194 (2023) 105532.

    113. [113]

      N.G. Genna, J.A. Gourlie, J. Barroso, Plants-Basel. 10 (2021) 2725.  doi: 10.3390/plants10122725

    114. [114]

      M. Tsukamoto, H. Kikugawa, S. Nagayama, et al., J. Pestic. Sci. 46 (2021) 152–159.  doi: 10.1584/jpestics.d20-031

    115. [115]

      J. Gherekhloo, S. Hassanpour-bourkheili, P. Hejazirad, et al., Plants-Basel. 10 (2021) 2248.  doi: 10.3390/plants10112248

    116. [116]

      S.E. Ramos, M. Bakhtiari, M. Castaneda-Zarate, et al., J. Syst. Evol. 61 (2023) 550–560.  doi: 10.1111/jse.12851

    117. [117]

      Q. Fu, P.P. Cai, L. Cheng, et al., Pest Manag. Sci. 76 (2020) 868–879.  doi: 10.1002/ps.5591

    118. [118]

      J.X. Mu, Z.W. Zhai, C.X. Tan, et al., J. Heterocycl. Chem. 56 (2019) 968–971.  doi: 10.1002/jhet.3476

    119. [119]

      B. He, F.X. Wu, L.K. Yu, et al., J. Agric. Food Chem. 68 (2020) 5059–5067.  doi: 10.1021/acs.jafc.0c00051

    120. [120]

      H.A. Zeng, W. Zhang, Z.X. Wang, et al., J. Agric. Food Chem. 71 (2023) 3950–3959.  doi: 10.1021/acs.jafc.2c07551

    121. [121]

      L.X. Zhao, K.Y. Chen, X.L. He, et al., J. Agric. Food Chem. 71 (2023) 14164–14178.  doi: 10.1021/acs.jafc.3c03108

    122. [122]

      D.F. Luo, H.D. Bai, X.M. Zhou, Front. Chem. 9 (2021) 647472.

    123. [123]

      J.X. Chen, Q.X. Li, B.A. Song, J. Agric. Food Chem. 68 (2020) 12175–12188.  doi: 10.1021/acs.jafc.0c02871

    124. [124]

      S. Wang, T. Du, H. Song, et al., Physiol. Mol. Plant P. 134 (2024) 102433.

    125. [125]

      Y. Wang, H.Y. Song, S. Wang, et al., Pestic. Biochem. Physiol. 189 (2023) 105310.

    126. [126]

      C.Q. Wei; J.J. Huang, Y.Q. Luo, et al., Pestic. Biochem. Physiol. 175 (2021) 104857.

    127. [127]

      J.L. Li, Z.C. Zhang, X.Y. Xu, et al., Aust. J. Chem. 68 (2015) 1543–1549.

    128. [128]

      X.L. Chen, Y.X. Xiao, G.L. Wang, et al., Res. Chem. Intermed. 42 (2016) 5495–5508.  doi: 10.1007/s11164-015-2381-y

    129. [129]

      X.H. Liu, W. Zhao, Z.H. Shen, et al., Eur. J. Med. Chem. 125 (2017) 881–889.

    130. [130]

      L. Cheng, Z.H. Shen, T.M. Xu, et al., J. Heterocycl. Chem. 55 (2018) 946–950.  doi: 10.1002/jhet.3123

    131. [131]

      W. Li, J.H. Li, H.F. Shen, et al., Chin. Chem. Lett. 29 (2018) 911–914.

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    3. [3]

      Chao ChenWang GengKe LiQiong LeiZhichao JinXiuhai Gan . Pyridazine: A privileged scaffold in the development of 21st-century pesticides. Chinese Chemical Letters, 2025, 36(8): 110902-. doi: 10.1016/j.cclet.2025.110902

    4. [4]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    5. [5]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    6. [6]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    9. [9]

      Wei SunAnjing LiaoLi LeiXu TangYa WangJian Wu . Research progress on piperidine-containing compounds as agrochemicals. Chinese Chemical Letters, 2025, 36(1): 109855-. doi: 10.1016/j.cclet.2024.109855

    10. [10]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    11. [11]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    12. [12]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    13. [13]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    14. [14]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    15. [15]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    16. [16]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    17. [17]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    18. [18]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    19. [19]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    20. [20]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return