Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions
-
* Corresponding author.
E-mail address:
Citation:
Junqing Ye, Mengyuan Ren, Junfeng Qian, Xibao Li, Qun Chen. Advances in graphene quantum dots-based photocatalysts for enhanced charge transfer in photocatalytic reactions[J]. Chinese Chemical Letters,
;2025, 36(9): 110857.
doi:
10.1016/j.cclet.2025.110857
Y. Guo, B. Yan, F. Deng, et al., Chin. Chem. Lett. 34 (2023) 107468.
doi: 10.1016/j.cclet.2022.04.066
W. Zhao, H. Chen, J. Zhang, et al., Chem. Sci. 15 (2024) 17292–17327.
doi: 10.1039/d4sc05065g
N. Li, Q. Zhang, L. Han, et al., Int. J. Hydrog. Energ. 48 (2023) 7004–7018.
doi: 10.1016/j.ijhydene.2022.06.308
J. Wang, S. Zhang, J. Ma, et al., Chin. Chem. Lett. 35 (2024) 109725.
doi: 10.1016/j.cclet.2024.109725
P. Zhou, I.A. Navid, Y. Ma, et al., Nature 613 (2023) 66–70.
doi: 10.1038/s41586-022-05399-1
X. Li, T. Han, Y. Zhou, et al., Sci. China Technol. Sc. 67 (2024) 1238–1252.
doi: 10.1007/s11431-023-2604-x
S. Zhao, S. Shen, L. Han, et al., Rare Met. 43 (2024) 4038–4055.
doi: 10.1007/s12598-024-02847-x
A. Fujishima, K. Honda, Nature 238 (1972) 37–38.
doi: 10.1038/238037a0
M. Tayyab, S. Mansoor, Z. Akmal, et al., J. Colloid Interf. Sci. 665 (2024) 911–921.
doi: 10.1016/j.jcis.2024.03.190
X. Li, B. Kang, F. Dong, et al., Nano Energy 81 (2021) 105671.
doi: 10.1016/j.nanoen.2020.105671
Z. Zan, X. Li, X. Gao, et al., Acta Phys. Chim. Sin. 39 (2023) 2209016.
doi: 10.3866/PKU.WHXB202209016
C. Liu, J. Zhang, W. Wang, et al., Surf. Interface. 42 (2023) 103491.
doi: 10.1016/j.surfin.2023.103491
X. Li, J. Xiong, X. Gao, et al., J. Hazard. Mater. 387 (2020) 121690.
doi: 10.1016/j.jhazmat.2019.121690
C. Ma, J. Wei, K. Jiang, et al., Sci. Total. Environ. 855 (2023) 158644.
doi: 10.1016/j.scitotenv.2022.158644
W. Cao, W. Zhang, L. Dong, et al., Exploration 3 (2023) 20220169.
doi: 10.1002/EXP.20220169
Y. Yan, J. Gong, J. Chen, et al., Adv. Mater. 31 (2019) 1808283.
doi: 10.1002/adma.201808283
M. Fan, Z. Wang, K. Sun, et al., Adv. Mater. 35 (2023) 2209086.
doi: 10.1002/adma.202209086
H. Tetsuka, A. Nagoya, T. Fukusumi, et al., Adv. Mater. 28 (2016) 4755-4755.
doi: 10.1002/adma.201670162
T. Zhao, C. Liu, T. Meng, et al., Small 18 (2022) 2201286.
doi: 10.1002/smll.202201286
X. Qin, Z. Zhan, R. Zhang, et al., Nanoscale 15 (2023) 3864–3871.
doi: 10.1039/d2nr07213k
J. Liang, Y. Liu, Z. Si, et al., Carbon 178 (2021) 265–272.
doi: 10.1016/j.carbon.2021.02.100
V.K. Sagar, S. Dey, S. Bhattacharya, et al., J. Photoch. Photobio. A 423 (2022) 113618.
doi: 10.1016/j.jphotochem.2021.113618
K. Wang, J. Dong, L. Sun, et al., RSC Adv. 6 (2016) 91225–91232.
doi: 10.1039/C6RA19673J
M. Park, Y. Jeong, H.S. Kim, et al., Adv. Funct. Mater. 31 (2021) 2102741.
doi: 10.1002/adfm.202102741
D. Mukherjee, P. Das, S. Kundu, et al., J. Photoch. Photobio. A 442 (2023) 114776.
doi: 10.1016/j.jphotochem.2023.114776
C. Cheng, Q. Liang, M. Yan, et al., J. Hazard. Mater. 424 (2022) 127721.
doi: 10.1016/j.jhazmat.2021.127721
Z. Sun, Y. Liao, S. Zhao, et al., J. Mater. Chem. A 10 (2022) 5174–5211.
doi: 10.1039/d1ta07856a
S. Xu, Y. Wang, Y. Wu, et al., Surf. Interface. 44 (2024) 103576.
doi: 10.1016/j.surfin.2023.103576
D. Wei, W. Tang, Y. Gan, X. Xu, Catal. Sci. Technol. 10 (2020) 5666–5676.
doi: 10.1039/d0cy00842g
Z. Yan, W. Wang, L. Du, et al., Appl. Catal. B: Environ 275 (2020) 119151.
doi: 10.1016/j.apcatb.2020.119151
H. Li, B. Zhu, B. Cheng, et al., J. Mater. Sci. Technol. 161 (2023) 192–200.
doi: 10.1016/j.jmst.2023.03.039
H. He, Z. Wang, J. Zhang, et al., Adv. Funct. Mater. 34 (2024) 2315426.
doi: 10.1002/adfm.202315426
L. Xiao, W. Ren, S. Shen, et al., Acta Phys. Chim. Sin. 40 (2024) 2308036.
doi: 10.3866/PKU.WHXB202308036
S. Shen, X. Li, Y. Zhou, et al., J. Mater. Sci. Technol. 155 (2023) 148–159.
doi: 10.1016/j.jmst.2023.03.006
Y. Lei, C. Yang, J. Hou, et al., Appl. Catal. B: Environ. 216 (2017) 59–69.
doi: 10.1016/j.apcatb.2017.05.063
H. Gu, G. Xing, H. Gu, et al., RSC Adv. 7 (2017) 52218–52226.
doi: 10.1039/C7RA10932F
X. Zhang, G. Ren, C. Zhang, et al., Catal. Lett. 150 (2020) 2510–2516.
doi: 10.1007/s10562-020-03182-3
L. Zhang, W. Wang, H. Wang, et al., Chem. Eng. Sci. 207 (2019) 1246–1255.
doi: 10.1016/j.ces.2019.07.049
W. Zhang, J. Xue, Q. Shen, et al., J. Alloy. Compd. 870 (2021) 159400.
doi: 10.1016/j.jallcom.2021.159400
Z. Liu, M. Luo, S. Yuan, et al., J. Colloid Interf. Sci. 650 (2023) 1301–1311.
doi: 10.1016/j.jcis.2023.07.085
A. Ghaffarkhah, E. Hosseini, M. Kamkar, et al., Small 18 (2022) 2102683.
doi: 10.1002/smll.202102683
S. Zhu, Y. Song, J. Wang, et al., Nano Today 13 (2017) 10–14.
doi: 10.1016/j.nantod.2016.12.006
J. Peng, W. Gao, B.K. Gupta, et al., Nano Lett. 12 (2012) 844–849.
doi: 10.1021/nl2038979
M. Zhao, Appl. Sci. 8 (2018) 1303.
doi: 10.3390/app8081303
J. Shen, Y. Zhu, C. Chen, et al., Chem. Commun. 47 (2011) 2580–2582.
doi: 10.1039/C0CC04812G
W. Kwon, Y.H. Kim, C.L. Lee, et al., Nano Lett. 14 (2014) 1306–1311.
doi: 10.1021/nl404281h
H. Chen, X. Zhu, H. Zong, et al., Int. J. Hydrog. Energ. 48 (2023) 36818–36824.
doi: 10.1016/j.ijhydene.2023.05.265
D. Pan, J. Zhang, Z. Li, et al., Adv. Mater. 22 (2010) 734–738.
doi: 10.1002/adma.200902825
X. Wu, L. Ma, S. Sun, et al., Nanoscale 10 (2018) 1532–1539.
doi: 10.1039/c7nr08093j
M. Xie, Y. Su, X. Lu, et al., Mater. Lett. 93 (2013) 161–164.
doi: 10.1016/j.matlet.2012.11.029
S. Zhuo, M. Shao, S.T. Lee, ACS Nano 6 (2012) 1059–1064.
doi: 10.1021/nn2040395
A. Ananthanarayanan, X. Wang, P. Routh, et al., Adv. Funct. Mater. 24 (2014) 3021–3026.
doi: 10.1002/adfm.201303441
X. Tan, Y. Li, X. Li, et al., Chem. Commun. 51 (2015) 2544–2546.
doi: 10.1039/C4CC09332A
S. Ahirwar, S. Mallick, D. Bahadur, ACS Omega 2 (2017) 8343–8353.
doi: 10.1021/acsomega.7b01539
M. He, X. Guo, J. Huang, et al., Carbon 140 (2018) 508–520.
doi: 10.1016/j.carbon.2018.08.067
H. Huang, S. Yang, Q. Li, et al., Langmuir 34 (2018) 250–258.
doi: 10.1021/acs.langmuir.7b03425
L.A. Ponomarenko, F. Schedin, M.I. Katsnelson, et al., Science 320 (2008) 356–358.
doi: 10.1126/science.1154663
Y. Shi, G. Zeng, C. Xie, et al., Acta Mater. 78 (2014) 314–319.
doi: 10.1016/j.actamat.2014.06.027
L. Lu, Y. Zhu, C. Shi, et al., Carbon 109 (2016) 373–383.
doi: 10.1016/j.carbon.2016.08.023
K.H. Park, S.H. Song, Materials 15 (2022) 6567.
doi: 10.3390/ma15196567
J. Lu, P.S.E. Yeo, C.K. Gan, et al., Nat. Nanotechnol. 6 (2011) 247–252.
doi: 10.1038/nnano.2011.30
Z. Luo, G. Qi, K. Chen, et al., Adv. Funct. Mater. 26 (2016) 2739–2744.
doi: 10.1002/adfm.201505044
J. Chen, B. Yao, C. Li, et al., Carbon 64 (2013) 225–229.
doi: 10.1109/ACSSC.2013.6810264
H. Li, X. He, Y. Liu, et al., Carbon 49 (2011) 605–609.
doi: 10.1016/j.carbon.2010.10.004
Y.D. Fomin, V.V. Brazhkin, Carbon 157 (2020) 767–778.
doi: 10.1016/j.carbon.2019.10.065
M.J. Mason, B.J. Coleman, S. Saha, et al., Carbon 182 (2021) 564–570.
doi: 10.1016/j.carbon.2021.06.046
M. Bhandari, J. Wang, D. Jang, et al., Sensors 21 (2021) 7291.
doi: 10.3390/s21217291
A. Muthurasu, P. Dhandapani, V. Ganesh, New J. Chem. 40 (2016) 9111–9124.
doi: 10.1039/C6NJ00586A
J. Deng, Q. Lu, H. Li, et al., RSC Adv. 5 (2015) 29704–29707.
doi: 10.1039/C4RA16805D
W.H. Danial, N.A. Norhisham, A.F. Ahmad Noorden, et al., Carbon Lett. 31 (2021) 371–388.
doi: 10.1007/s42823-020-00212-3
M.G. Giordano, G. Seganti, M. Bartoli, et al., Molecules 28 (2023) 2772.
doi: 10.3390/molecules28062772
Y. Dong, J. Shao, C. Chen, et al., Carbon 50 (2012) 4738–4743.
doi: 10.1016/j.carbon.2012.06.002
A.P.d.M. Rocha, M.I. Alayo, D.M. da Silva, Appl. Sci. 12 (2022) 8686.
doi: 10.3390/app12178686
D. Qu, M. Zheng, P. Du, et al., Nanoscale 5 (2013) 12272–12277.
doi: 10.1039/c3nr04402e
S.R. Nxele, T. Nyokong, Diam. Relat. Mater. 121 (2022) 108751.
doi: 10.1016/j.diamond.2021.108751
L. Wang, Y. Wang, T. Xu, et al., Nat. Commun. 5 (2014) 5357.
doi: 10.1038/ncomms6357
X. Wu, F. Tian, W. Wang, et al., J. Mater. Chem. C 1 (2013) 4676–4684.
doi: 10.1039/c3tc30820k
L. Tang, R. Ji, X. Cao, et al., ACS Nano 6 (2012) 5102–5110.
doi: 10.1021/nn300760g
L.X. Hung, N.H. Yen, T.T. Hue, et al., J. Nanopart. Res. 24 (2022) 206.
doi: 10.1007/s11051-022-05579-0
M.T. Hasan, R. Gonzalez-Rodriguez, C. Ryan, et al., Adv. Funct. Mater. 28 (2018) 1804337.
doi: 10.1002/adfm.201804337
X. Li, Q. Luo, L. Han, et al., J. Mater. Sci. Technol. 114 (2022) 222–232.
doi: 10.1016/j.jmst.2021.10.030
Q. Ren, L. Ga, J. Ai, ACS Omega 4 (2019) 15842–15848.
doi: 10.1021/acsomega.9b01612
R. Li, Y. Liu, Z. Li, et al., Chem. Eur. J. 22 (2016) 272–278.
doi: 10.1002/chem.201503191
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, et al., Small 11 (2015) 1620–1636.
doi: 10.1002/smll.201402648
W.I.W. Omar, C.F. Soon, M.K. Ahmad, et al., Energy Environ. 32 (2021) 1170–1182.
doi: 10.1177/0958305x20984112
Y. Zhu, L. Yan, M. Xu, et al., Colloid Surface A 610 (2021) 125703.
doi: 10.1016/j.colsurfa.2020.125703
S. Khan, A.K. Narula, J. Mater. Sci. Mater. El. 34 (2023) 1955.
doi: 10.1007/s10854-023-11363-0
E. Campbell, M.T. Hasan, R.G. Rodriguez, et al., ACS Biomater. Sci. Eng. 5 (2019) 4671–4682.
doi: 10.1021/acsbiomaterials.9b00603
P. Ding, J. Di, X. Chen, et al., ACS Sustain. Chem. Eng. 6 (2018) 10229–10240.
doi: 10.1021/acssuschemeng.8b01552
X. Yan, X. Cui, L.S. Li, J. Am. Chem. Soc. 132 (2010) 5944–5945.
doi: 10.1021/ja1009376
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
J. Wang, Z. Wang, J. Zhang, et al., ACS Nano 18 (2024) 20740–20750.
doi: 10.1021/acsnano.4c06954
L. Liu, Z. Wang, J. Zhang, et al., Adv. Mater. 35 (2023) 2300643.
doi: 10.1002/adma.202300643
Z. Zhao, Z. Wang, J. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2214470.
doi: 10.1002/adfm.202214470
G. Li, Y.Y. Zhang, H. Guo, et al., Chem. Soc. Rev. 47 (2018) 6073–6100.
doi: 10.1039/c8cs00286j
T. Yang, J. Wang, Z. Wang, et al., Chin. J. Catal. 58 (2024) 157–167.
doi: 10.1016/S1872-2067(23)64607-8
T.W. Dahl, M.A.R. Harding, J. Brugger, et al., Nat. Commun. 13 (2022) 7616.
doi: 10.1038/s41467-022-35085-9
A. Xu, S.F. Hung, A. Cao, et al., Nat. Catal. 5 (2022) 1081–1088.
doi: 10.1038/s41929-022-00880-6
F. Xu, K. Meng, B. Zhu, et al., Adv. Funct. Mater. 29 (2019) 1904256.
doi: 10.1002/adfm.201904256
J. Gao, X. Qian, Q. Wei, et al., J. Colloid Interf. Sci. 623 (2022) 974–984.
doi: 10.1016/j.jcis.2022.05.116
Q. Lei, H. Yuan, J. Du, et al., Nat. Commun. 14 (2023) 1087.
doi: 10.1038/s41467-023-36784-7
M. Bagheri, M.Y. Masoomi, Coordin. Chem. Rev. 468 (2022) 214643.
doi: 10.1016/j.ccr.2022.214643
J. Wang, Z. Wang, J. Zhang, et al., Chin. J. Struct. Chem. 42 (2023) 100202.
doi: 10.1088/1674-1056/acd9c2
M. Dong, J.X. Gu, C.Y. Sun, et al., Chem. Commun. 58 (2022) 10114–10126.
doi: 10.1039/d2cc02939a
Q. Yu, X. Wang, W. Wu, et al., Molecules 28 (2023) 4703.
doi: 10.3390/molecules28124703
J. Gong, J. Hou, J. Mater. Sci. Technol. 186 (2024) 158–163.
doi: 10.1016/j.jmst.2023.11.018
Y. Liu, B. Yang, H. He, et al., Sci. Total. Environ. 804 (2022) 150215.
doi: 10.1016/j.scitotenv.2021.150215
S. Xiong, S. Bao, W. Wang, et al., Appl. Catal. B: Environ. 305 (2022) 121026.
doi: 10.1016/j.apcatb.2021.121026
B. Sarkar, A.V. Daware, P. Gupta, K.K. Krishnani, et al., Environ. Sci. Pollut. Res. 24 (2017) 25775–25797.
doi: 10.1007/s11356-017-0252-3
A. Rafiq, M. Ikram, S. Ali, et al., J. Ind. Eng. Chem. 97 (2021) 111–128.
doi: 10.1016/j.jiec.2021.02.017
S. Dong, Y. Gong, Z. Zeng, et al., Water Res. 242 (2023) 120297.
doi: 10.1016/j.watres.2023.120297
C.S. Uyguner-Demirel, N. Turkten, Y. Karatas, M. Bekbolet, Environ. Sci. Pollut. Res. 30 (2023) 85626–85638.
doi: 10.1007/s11356-023-28385-0
S. Deepracha, A. Ayral, M. Ogawa, Appl. Catal. B: Environ. 284 (2021) 119705.
doi: 10.1016/j.apcatb.2020.119705
A. Sarwar, A. Razzaq, M. Zafar, et al., Result. Phys. 45 (2023) 106253.
doi: 10.1016/j.rinp.2023.106253
Y.C. Nie, F. Yu, L.C. Wang, et al., Appl. Catal. B: Environ. 227 (2018) 312–321.
doi: 10.1016/j.apcatb.2018.01.033
T. Selvakumar, M. Rajaram, A. Natarajan, et al., J. Mater. Sci. Mater. El. 34 (2023) 417.
doi: 10.1007/s10854-023-09855-0
Y. Huo, X. Ding, X. Zhang, et al., Catal. Sci. Technol. 12 (2022) 3937–3946.
doi: 10.1039/d2cy00605g
Y. Sun, C. Wang, G. Gu, et al., Catal. Today 340 (2020) 294–301.
doi: 10.1016/j.cattod.2018.09.031
S. Li, Z. Chen, D. Wu, et al., B. Korea. Chem. Soc. 41 (2020) 552–557.
doi: 10.1002/bkcs.12009
M. Yan, F. Zhu, W. Gu, et al., RSC Adv. 6 (2016) 61162–61174.
doi: 10.1039/C6RA07589D
A. Khataee, S. Sajjadi, A. Hasanzadeh, et al., J. Ind. Eng. Chem. 75 (2019) 230–237.
doi: 10.1016/j.jiec.2019.01.048
S. Kumar, A. Dhiman, P. Sudhagar, et al., Appl. Surf. Sci. 447 (2018) 802–815.
doi: 10.1016/j.apsusc.2018.04.045
D. Chu, K. Li, A. Liu, L. Huang, et al., Int. J. Hydrog. Energ. 43 (2018) 7307–7316.
doi: 10.1016/j.ijhydene.2018.02.152
L. Sun, L. Han, J. Huang, et al., Int. J. Hydrog. Energ. 47 (2022) 17583–17599.
doi: 10.1016/j.ijhydene.2022.03.259
J. Wu, X. Xi, W. Zhu, et al., Chem. Eng. J. 442 (2022) 136334.
doi: 10.1016/j.cej.2022.136334
J. Torres-Rodriguez, S.N. Myakala, M. Salihovic, et al., Carbon 202 (2023) 487–494.
doi: 10.1016/j.carbon.2022.10.073
F. Fu, Z. Wu, G. Cha, P. Schmuki, Chem. Commun. 57 (2021) 7120–7123.
doi: 10.1039/d1cc02036f
S. Sharma, V. Dutta, P. Raizada, et al., Environ. Chem. Lett. 19 (2021) 271–306.
doi: 10.1007/s10311-020-01066-x
Y.J. Yuan, D. Chen, Z.T. Yu, et al., J. Mater. Chem. A 6 (2018) 11606–11630.
doi: 10.1039/c8ta00671g
L. Zhu, Q. Yue, D. Jiang, et al., Chin. J. Catal. 39 (2018) 1753–1761.
doi: 10.1016/S1872-2067(18)63135-3
D. Dinda, H. Park, H.J. Lee, et al., Carbon 167 (2020) 760–769.
doi: 10.1016/j.carbon.2020.06.041
H. Chen, Z. Mo, Z. Wang, et al., J. Environ. Chem. Eng. 11 (2023) 109801.
doi: 10.1016/j.jece.2023.109801
S. Min, J. Hou, Y. Lei, et al., Appl. Surf. Sci. 396 (2017) 1375–1382.
doi: 10.1016/j.apsusc.2016.11.169
H. Park, S.Y. Park, ACS Appl. Mater. Interface. 14 (2022) 26733–26741.
doi: 10.1021/acsami.2c04703
Y. Liu, X. Xu, S. Lv, et al., Catal. Sci. Technol. 11 (2021) 3039–3046.
doi: 10.1039/d1cy00388g
S. Samanta, V.R. Battula, N. Sardana, et al., Appl. Surf. Sci. 563 (2021) 150409.
doi: 10.1016/j.apsusc.2021.150409
M. Yan, Y. Hua, F. Zhu, et al., Appl. Catal. B: Environ. 206 (2017) 531–537.
doi: 10.1016/j.apcatb.2017.01.070
C. Wang, F. Zheng, L. Zhang, et al., Appl. Surf. Sci. 640 (2023) 158383.
doi: 10.1016/j.apsusc.2023.158383
J. Ma, L. Chu, Y. Guo, et al., Materials 14 (2021) 5354.
doi: 10.3390/ma14185354
H. Xie, C. Hou, H. Wang, et al., Nanoscale Res. Lett. 12 (2017) 400.
doi: 10.1186/s11671-017-2101-1
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Huifang Ma , Tao Xu , Saifei Yuan , Shujuan Li , Jiayao Wang , Yuping Zhang , Hao Ren , Shulai Lei . Interlayer interactions and electron transfer effects on sodium adsorption on 2D heterostructures surfaces. Chinese Chemical Letters, 2025, 36(8): 110219-. doi: 10.1016/j.cclet.2024.110219
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Yan Fan , Jiao Tan , Cuijuan Zou , Xuliang Hu , Xing Feng , Xin-Long Ni . Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water. Chinese Chemical Letters, 2025, 36(4): 110101-. doi: 10.1016/j.cclet.2024.110101
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Hao Deng , Yuxin Hui , Chao Zhang , Qi Zhou , Qiang Li , Hao Du , Derek Hao , Guoxiang Yang , Qi Wang . MXene−derived quantum dots based photocatalysts: Synthesis, application, prospects, and challenges. Chinese Chemical Letters, 2024, 35(6): 109078-. doi: 10.1016/j.cclet.2023.109078
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Ping Wang , Chunmao Chen , Hongwei Ren , Erhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725