Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity
-
* Corresponding authors.
E-mail addresses: kangda.zhang@zjnu.cn (K.-D. Zhang), sgchen@whu.edu.cn (S.-G. Chen).
Citation:
Hong-Qiang Dong, Shang-Bo Yu, Shu-Meng Wang, Jia-Hao Zhao, Xu-Guan Bai, Shi-Xing Lei, Zhen-Nan Tian, Jia Tian, Kang-Da Zhang, Lu Wang, Zhan-Ting Li, Shigui Chen. Construction of radical halogen-bonded organic frameworks with enhanced magnetism and conductivity[J]. Chinese Chemical Letters,
;2025, 36(8): 110730.
doi:
10.1016/j.cclet.2024.110730
S. Kasemthaveechok, L. Abella, J. Crassous, et al., Chem. Sci. 13 (2022) 9833–9847.
doi: 10.1039/d2sc02480b
Z.X. Chen, Y. Li, F. Huang, Chem 7 (2021) 288–332.
T. Kubo, M. Abe, Chem. Rev. 124 (2024) 4541–4542.
doi: 10.1021/acs.chemrev.3c00893
D. Maspoch, N. Domingo, D. Ruiz-Molina, et al., Angew. Chem. Int. Ed. 43 (2004) 1828–1832.
Y. Jiang, I. Oh, S.H. Joo, et al., ACS Nano 13 (2019) 5251–5258.
doi: 10.1021/acsnano.8b09634
I. Ratera, J. Veciana, Chem. Soc. Rev. 41 (2012) 303–349.
K.Q. Hu, Z.W. Huang, X.B. Li, et al., Adv. Funct. Mater. 33 (2023) 2213039.
F. Chen, X. Guan, H. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 22230–22235.
doi: 10.1002/anie.202108357
F. Xu, H. Xu, X. Chen, et al., Angew. Chem. Int. Ed. 54 (2015) 6814–6818.
doi: 10.1002/anie.201501706
M.P. Sibi, C. Li, N. Jiao, Sci. China Chem. 62 (2019) 1423–1424.
doi: 10.1007/s11426-019-9643-y
A. Bhunia, A. Studer, Chem 7 (2021) 2060–2100.
M. Mas-Torrent, N. Crivillers, C. Rovira, J. Veciana, Chem. Rev. 112 (2012) 2506–2527.
doi: 10.1021/cr200233g
B. Tang, J. Zhao, J.F. Xu, X. Zhang, Chem. Sci. 11 (2020) 1192–1204.
doi: 10.1039/c9sc06143f
J. Sun, Z. Liu, W.G. Liu, et al., J. Am. Chem. Soc. 139 (2017) 12704–12709.
doi: 10.1021/jacs.7b06857
K.T. Tan, S. Ghosh, Z. Wang, et al., Nat. Rev. Methods Primers 3 (2023) 1–19.
X. Feng, X. Ding, D. Jiang, Chem. Soc. Rev. 41 (2012) 6010–6022.
doi: 10.1039/c2cs35157a
J. Zhang, W. Kosaka, Y. Kitagawa, H. Miyasaka, Nat. Chem. 13 (2021) 191–199.
doi: 10.1038/s41557-020-00577-y
R.B. Lin, Y. He, P. Li, et al., Chem. Soc. Rev. 48 (2019) 1362–1389.
doi: 10.1039/c8cs00155c
B. Yang, S.B. Yu, P.Q. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 26268–26275.
doi: 10.1002/anie.202112514
J.R. Li, R.J. Kuppler, H.C. Zhou, Chem. Soc. Rev. 38 (2009) 1477–1504.
doi: 10.1039/b802426j
J. Dong, X. Han, Y. Liu, et al., Angew. Chem. Int. Ed. 59 (2020) 13722–13733.
doi: 10.1002/anie.202004796
C. Liu, C. Jia, S.X. Gan, et al., Chin. Chem. Lett. 35 (2024) 109750.
S.M.J. Rogge, A. Bavykina, J. Hajek, et al., Chem. Soc. Rev. 46 (2017) 3134–3184.
Q. Zhu, L. Wei, C. Zhao, et al., J. Am. Chem. Soc. 145 (2023) 23352–23360.
doi: 10.1021/jacs.3c09246
H. Furukawa, O.M. Yaghi, J. Am. Chem. Soc. 131 (2009) 8875–8883.
doi: 10.1021/ja9015765
S. Tao, D. Jiang, CCS Chem. 3 (2021) 2003–2024.
doi: 10.31635/ccschem.020.202000491
S. Kandambeth, K. Dey, R. Banerjee, J. Am. Chem. Soc. 141 (2019) 1807–1822.
doi: 10.1021/jacs.8b10334
N. Keller, T. Bein, Chem. Soc. Rev. 50 (2021) 1813–1845.
doi: 10.1039/d0cs00793e
J. Guo, Y. Duan, Y. Jia, et al., Nat. Commun. 15 (2024) 139.
Y.Z. Cheng, W. Ji, X. Wu, et al., Appl. Catal. B: Environ. 306 (2022) 121110.
Q. Gu, X. Lu, C. Chen, et al., ACS Nano 17 (2023) 23903–23912.
doi: 10.1021/acsnano.3c08313
Z. Mi, P. Yang, R. Wang, et al., J. Am. Chem. Soc. 141 (2019) 14433–14442.
doi: 10.1021/jacs.9b07695
W. Cao, W.D. Wang, H.S. Xu, et al., J. Am. Chem. Soc. 140 (2018) 6969–6977.
doi: 10.1021/jacs.8b02839
H. Li, J. Chang, S. Li, et al., J. Am. Chem. Soc. 141 (2019) 13324–13329.
doi: 10.1021/jacs.9b06908
Y. Zhou, F. Yu, J. Su, et al., Angew. Chem. Int. Ed. 59 (2020) 18763–18767.
doi: 10.1002/anie.202008941
L. Mao, M. Zhou, X. Shi, H.B. Yang, Chin. Chem. Lett. 32 (2021) 3331–3341.
G. Cavallo, P. Metrangolo, R. Milani, et al., Chem. Rev. 116 (2016) 2478–2601.
doi: 10.1021/acs.chemrev.5b00484
L.C. Gilday, S.W. Robinson, T.A. Barendt, et al., Chem. Rev. 115 (2015) 7118–7195.
doi: 10.1021/cr500674c
H. Wang, W. Wang, W.J. Jin, Chem. Rev. 116 (2016) 5072–5104.
doi: 10.1021/acs.chemrev.5b00527
F. Zapata, A. Caballero, N.G. White, et al., J. Am. Chem. Soc. 134 (2012) 11533–11541.
doi: 10.1021/ja302213r
C.Z. Liu, S. Koppireddi, H. Wang, et al., Chin. Chem. Lett. 30 (2019) 953–956.
doi: 10.3390/app9050953
J.Y.C. Lim, I. Marques, V. Félix, P.D. Beer, Angew. Chem. Int. Ed. 57 (2018) 584–588.
doi: 10.1002/anie.201711176
J.T. Wilmore, P.D. Beer, Adv. Mater. 36 (2024) 2309098.
P. Metrangolo, F. Meyer, T. Pilati, et al., Angew. Chem. Int. Ed. 47 (2008) 6114–6127.
doi: 10.1002/anie.200800128
A. Mukherjee, S. Tothadi, G.R. Desiraju, Acc. Chem. Res. 47 (2014) 2514–2524.
doi: 10.1021/ar5001555
P.M.J. Szell, S. Zablotny, D.L. Bryce, Nat. Commun. 10 (2019) 916.
A.C. Keuper, K. Fengler, F. Ostler, et al., Angew. Chem. Int. Ed. 62 (2023) e202304781.
L. Turunen, M. Erdélyi, Chem. Soc. Rev. 49 (2020) 2688–2700.
doi: 10.1039/d0cs00034e
L.H.E. Wieske, M. Erdelyi, J. Am. Chem. Soc. 146 (2024) 3–18.
doi: 10.1021/jacs.3c11449
L. Turunen, U. Warzok, C.A. Schalley, K. Rissanen, Chem 3 (2017) 861–869.
L. Turunen, U. Warzok, R. Puttreddy, et al., Angew. Chem. Int. Ed. 55 (2016) 14033–14036.
doi: 10.1002/anie.201607789
L. Turunen, A. Peuronen, S. Forsblom, et al., Chem. Eur. J. 23 (2017) 11714–11718.
doi: 10.1002/chem.201702655
S. Yu, E. Kalenius, A. Frontera, K. Rissanen, Chem. Commun. 57 (2021) 12464–12467.
doi: 10.1039/d1cc05616f
G. Gong, S. Lv, J. Han, et al., Angew. Chem. Int. Ed. 60 (2021) 14831–14835.
doi: 10.1002/anie.202102448
Z. Tian, J. Zhao, G. Gong, et al., Sci. China Chem. 53 (2023) 2367–2377.
G. Gong, J. Zhao, Y. Chen, et al., J. Mater. Chem. A 10 (2022) 10586–10592.
doi: 10.1039/d2ta00628f
S. Wang, H. Dong, G. Gong, et al., Mater. Chem. Front. 8 (2024) 4096–4105.
doi: 10.1039/d4qm00735b
Q. Zhao, P. Sun, G. Gong, et al., Sci. China Chem. 68 (2025) 631–640.
doi: 10.1007/s11426-024-2204-8
N. Xia, J. Han, F. Xie, et al., ACS Appl. Mater. Interfaces 14 (2022) 43621–43627.
doi: 10.1021/acsami.2c11598
P. Sun, H. Dong, S. Lv, et al., J. Mater. Chem. A 12 (2024) 1128–1134.
doi: 10.1039/d3ta06144b
N. Xia, J. Zhao, G. Gong, et al., Sci. China Chem. 66 (2023) 3169–3177.
doi: 10.1007/s11426-023-1829-8
X. Bai, Z. Tian, H. Dong, et al., Angew. Chem. Int. Ed. 63 (2024) e202408428.
P.Mayorga Burrezo, V.G. Jiménez, D. Blasi, et al., Angew. Chem. Int. Ed. 58 (2019) 16282–16288.
J. Zhao, N. Xia, Z. Tian, et al., ACS Mater. Lett. 6 (2024) 508–516.
doi: 10.1021/acsmaterialslett.3c01276
Y. Gao, W. Xu, H. Ma, et al., Chem. Mater. 29 (2017) 6733–6739.
doi: 10.1021/acs.chemmater.7b01521
P.M.A. Sherwood, J. Chem. Soc., Faraday Trans. 72 (1976) 1805–1820.
W. Zhang, L. Zhou, J. Shi, H. Deng, J. Colloid Interface Sci. 496 (2017) 167–176.
T. Jiao, H. Qu, L. Tong, et al., Angew. Chem. Int. Ed. 60 (2021) 9852–9858.
doi: 10.1002/anie.202100655
X. Xu, Y. Yue, G. Xin, N. Huang, Macromol. Rapid Commun. 44 (2023) 2200715.
Zhengzhong Zhu , Shaojun Hu , Zhi Liu , Lipeng Zhou , Chongbin Tian , Qingfu Sun . A cationic radical lanthanide organic tetrahedron with remarkable coordination enhanced radical stability. Chinese Chemical Letters, 2025, 36(2): 109641-. doi: 10.1016/j.cclet.2024.109641
Le Zhang , Hui-Yu Xie , Xin Li , Li-Ying Sun , Ying-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465
Xiao-Bo Liu , Ren-Ming Liu , Xiao-Di Bao , Hua-Jian Xu , Qi Zhang , Yu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783
Hefei Yang , Le-Cheng Wang , Xiao-Feng Wu . Sustainable carbonylative transformation of alkyl iodides to amides via crosslinking of EDA and XAT. Chinese Chemical Letters, 2025, 36(9): 110843-. doi: 10.1016/j.cclet.2025.110843
Siyi Lin , Qingxue Xu , Xuguan Bai , Zhennan Tian , Lu Wang , Fuxin Han , Shigui Chen , Qiang Cai . Halogen-bonded organic frameworks (XOFs) based on [N···Br+···N] bonds for enhanced photothermal cancer therapy. Chinese Chemical Letters, 2026, 37(1): 111425-. doi: 10.1016/j.cclet.2025.111425
Matvey K. Shurikov , Yuliana A. Kolesnikova , Darya E. Votkina , Pavel A. Abramov , Taisiya S. Sukhikh , Galina V. Romanenko , Sergey L. Veber , Dmitry E. Gorbunov , Nina P. Gritsan , Giuseppe Resnati , Evgeny V. Tretyakov , Vadim Yu. Kukushkin , Pavel S. Postnikov , Pavel V. Petunin . Engineering optical anisotropy in paramagnetic organic crystals: Dichroism of nitronyl nitroxide radicals. Chinese Journal of Structural Chemistry, 2025, 44(9): 100653-100653. doi: 10.1016/j.cjsc.2025.100653
Qi Zhang , Ziyu Liu , Hongxia Tan , Jun Tong , Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Ying Chen , Lun Li , Guohao Han , Ren Liu , Guanghui An , Yi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Jingtao Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867
Le Ye , Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257
Wei Zhou , Xi Chen , Lin Lu , Xian-Rong Song , Mu-Jia Luo , Qiang Xiao . Recent advances in electrocatalytic generation of indole-derived radical cations and their applications in organic synthesis. Chinese Chemical Letters, 2024, 35(4): 108902-. doi: 10.1016/j.cclet.2023.108902
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Zhili Yang , Liqun Liu , Xuebi Rao , Zeyu Jin , Jialin Sun , Yongkang Zhu , Shiming Zhang . Deprotonation effect doubles active site density in Fe-N4-C catalyst for oxygen reduction electrocatalysis. Chinese Chemical Letters, 2025, 36(11): 111440-. doi: 10.1016/j.cclet.2025.111440
Tianjun Ni , Hui Zhang , Liping Zhou , Roujie Ma , Yanyu Wang , Zhijun Yang , Dan Luo , Nithima Khaorapapong , Xingtao Xu , Yusuke Yamauchi , Dong Liu . Atomic cobalt catalysts on 3D interconnected g-C3N4 support for activation of peroxymonosulfate: The importance of Co-N coordination effect. Chinese Chemical Letters, 2025, 36(9): 110659-. doi: 10.1016/j.cclet.2024.110659
Nianhua Luo , Jiayi Jiang , Muhammad Suleman , Zhaowen Liu , Shuping Huang , Wei Xiao , Jie Wu , Jiapian Huang . Advances in radical Smiles rearrangement. Chinese Chemical Letters, 2026, 37(2): 111556-. doi: 10.1016/j.cclet.2025.111556
Jiang Gong , Fengling Zheng , Hanqing Zhang , Weihan Shu , Hao Wang , Ni Zhang , Pengbing Huang , Chuancai Zhang , Bin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122
Ruotong Wei , Aokun Liu , Jian Kuang , Zhiwen Wang , Lu Yu , Changlin Tian . Probing the dynamic properties in the LLPS process via site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy. Chinese Chemical Letters, 2025, 36(4): 110029-. doi: 10.1016/j.cclet.2024.110029
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821