Application of machine learning for material prediction and design in the environmental remediation
-
* Corresponding author.
E-mail address: hecs@scu.edu.cn (C.-S. He).
Citation:
Yunzhe Zheng, Si Sun, Jiali Liu, Qingyu Zhao, Heng Zhang, Jing Zhang, Peng Zhou, Zhaokun Xiong, Chuan-Shu He, Bo Lai. Application of machine learning for material prediction and design in the environmental remediation[J]. Chinese Chemical Letters,
;2025, 36(9): 110722.
doi:
10.1016/j.cclet.2024.110722
Y. Zheng, X. Wang, Y. Dong, et al., Appl. Catal. B: Environ. Energy 361 (2025) 124580.
doi: 10.1016/j.apcatb.2024.124580
H. Zhao, X. Tan, H. Chai, et al., Chin. Chem. Lett. (2024) 110571. DOI: https://doi.org/10.1016/j.cclet.2024.110571.
doi: 10.1016/j.cclet.2024.110571
S. Sun, S. Song, S. Yang, et al., Chin. Chem. Lett. 35 (2024) 109242.
doi: 10.1016/j.cclet.2023.109242
M.J. Wang, J. Yang, L. Peng, et al., Chin. Chem. Lett. (2024) 110573. DOI: https://doi.org/10.1016/j.cclet.2024.110573.
doi: 10.1016/j.cclet.2024.110573
Y. Liu, T. Zhao, W. Ju, et al., J. Materiomics. 3 (2017) 159-177.
doi: 10.4142/jvs.2017.18.2.159
Y. Sun, P. Zhou, M. Sun, et al., ACS Catal. 14 (2024) 6525-6534.
doi: 10.1021/acscatal.4c00048
G.R. Schleder, A.C.M. Padilha, C.M. Acosta, et al., J. Phys. : Mater. 2 (2019) 032001.
doi: 10.1088/2515-7639/ab084b
M. Wu, D.C. Kozanoglu, C. Min, et al., Adv. Eng. Inform. 50 (2021) 101368.
doi: 10.1016/j.aei.2021.101368
M.M. Ahsan, S.A. Luna, Z. Siddique, Healthcare 10 (2022) 541.
doi: 10.3390/healthcare10030541
S. Dara, S. Dhamercherla, S.S. Jadav, et al., Artif. Intell. Rev. 55 (2022) 1947-1999.
doi: 10.1007/s10462-021-10058-4
R. Yang, J. Hu, Z. Li, et al., Atmos. Environ. 338 (2024) 120797.
doi: 10.1016/j.atmosenv.2024.120797
I.H. Sarker, A.S.M. Kayes, S. Badsha, et al., J. Big Data 7 (2020) 41.
doi: 10.1186/s40537-020-00318-5
K. Noda, Y. Yamaguchi, K. Nakadai, et al., Appl. Intell. 42 (2015) 722-737.
doi: 10.1007/s10489-014-0629-7
B.M. Henrique, V.A. Sobreiro, H. Kimura, Expert Syst. Appl. 124 (2019) 226-251.
doi: 10.1016/j.eswa.2019.01.012
X. Zhao, L. Wang, Y. Pei, J. Phys. Chem. C 125 (2021) 22513-22521.
doi: 10.1021/acs.jpcc.1c05734
Z. Wang, H. Zhang, J. Li, Nano Energy 81 (2021) 105665.
doi: 10.1016/j.nanoen.2020.105665
Z.W. Chen, Z. Lu, L.X. Chen, et al., Chem. Catalysis 1 (2021) 183-195.
J. Feng, Y. Ji, Y. Li, J. Mater. Chem. A 11 (2023) 14195-14203.
doi: 10.1039/d3ta01883k
R. Wang, H. Chen, Z. He, et al., Environ. Sci. Technol. 58 (2024) 16867-16876.
doi: 10.1021/acsnano.4c02631
K.N. Palansooriya, J. Li, P.D. Dissanayake, et al., Environ. Sci. Technol. 56 (2022) 4187-4198.
doi: 10.1021/acs.est.1c08302
R. Wang, S. Zhang, H. Chen, et al., Environ. Sci. Technol. 57 (2023) 4050-4059.
doi: 10.1021/acs.est.2c07073
L. Zhou, S. Pan, J. Wang, et al., Neurocomputing 237 (2017) 350-361.
doi: 10.1016/j.neucom.2017.01.026
J. Orbach, Arch. Gen. Psychiatry 7 (1962) 218-219.
doi: 10.1001/archpsyc.1962.01720030064010
T. Cover, P. Hart, IEEE Trans. Inf. Theory 13 (1967) 21-27.
doi: 10.1109/TIT.1967.1053964
D. Beattie, Int. J. Man-Mach. Stud. 1 (1969) 331-332.
doi: 10.1016/S0020-7373(69)80028-3
L. Liu, Y. Wang, W. Chi, IEEE Access (2020) 1-1. DOI:http://doi.org/10.1109/ACCESS.2020.3021590.
doi: 10.1021/acsami.5c04836
D.W. Otter, J.R. Medina, J.K. Kalita, IEEE Trans. Neural Netw. Learn. Syst. 32 (2021) 604-624.
doi: 10.1109/tnnls.2020.2979670
J.X. Chen, Comput. Sci. Eng. 18 (2016) 4-7.
A.M. Żurański, J.I. Martinez Alvarado, B.J. Shields, et al., Acc. Chem. Res. 54 (2021) 1856-1865.
doi: 10.1021/acs.accounts.0c00770
A.J. Chowdhury, W. Yang, E. Walker, et al., J. Phys. Chem. C 122 (2018) 28142-28150.
doi: 10.1021/acs.jpcc.8b09284
Z. Li, X. Ma, H. Xin, Catal. Today 280 (2017) 232-238.
doi: 10.1016/j.cattod.2016.04.013
X. Ma, Z. Li, L.E. Achenie, et al., J. Phys. Chem. Lett. 6 (2015) 3528-3533.
doi: 10.1021/acs.jpclett.5b01660
X. Wang, S. Ye, W. Hu, et al., J. Am. Chem. Soc. 142 (2020) 7737-7743.
doi: 10.1021/jacs.0c01825
N. Artrith, Z. Lin, J.G. Chen, ACS Catal. 10 (2020) 9438-9444.
doi: 10.1021/acscatal.0c02089
J. Park, I. Chung, H. Jeong, et al., Appl. Catal. B: Environ. Energy 361 (2025) 124622.
doi: 10.1016/j.apcatb.2024.124622
M. Tamtaji, H. Gao, M.D. Hossain, et al., J. Mater. Chem. A 10 (2022) 15309-15331.
doi: 10.1039/d2ta02039d
M.E. Günay, R. Yıldırım, Chem. Eng. J. 140 (2008) 324-331.
doi: 10.1016/j.cej.2007.09.047
H.B. Barlow, Neural Comput. 1 (1989) 295-311.
doi: 10.1162/neco.1989.1.3.295
Z. -Z. Shi, W. -P. Li, W. -J. Kang, et al., ACS Catal. 13 (2023) 9181-9189.
doi: 10.1021/acscatal.3c01400
M.L. Raymer, W.F. Punch, E.D. Goodman, et al., IEEE Trans. Evol. Comput. 4 (2000) 164-171.
doi: 10.1109/4235.850656
K. Vougas, T. Sakellaropoulos, A. Kotsinas, et al., Pharmacol. Ther. 203 (2019) 107395.
doi: 10.1016/j.pharmthera.2019.107395
J.E. van Engelen, H.H. Hoos, Mach. Learn. 109 (2020) 373-440.
doi: 10.1007/s10994-019-05855-6
S. Wang, C. Qian, S. Zhou, ACS Appl. Mater. Interfaces 15 (2023) 40656-40664.
doi: 10.1021/acsami.3c08535
Y. Roh, G. Heo, S.E. Whang, IEEE Trans. Knowl. Data Eng. 33 (2021) 1328-1347.
doi: 10.1109/tkde.2019.2946162
S. Shi, S. Sun, S. Ma, et al., J. Inorg. Mater. 37 (2022) 1311-1325.
doi: 10.15541/jim20220149
C. -Y. Chang, M. -T. Hsu, E.X. Esposito, et al., J. Chem Inf. Model. 53 (2013) 958-971.
doi: 10.1021/ci4000536
Y. Liu, S. Ma, Z. Yang, et al., J. Chin. Ceram. Soc. 51 (2023) 427-437.
doi: 10.1007/s00404-023-07044-2
Y. Liu, X. Zou, Z. Yang, et al., J. Chin. Ceram. Soc. 50 (2022) 863.
S. García, S. Ramírez-Gallego, J. Luengo, et al., Big. Data. Anal. 1 (2016) 9.
doi: 10.1186/s41044-016-0014-0
S.J. Hadeed, M.K. O'Rourke, J.L. Burgess, et al., Sci. Total Environ. 730 (2020) 139140.
doi: 10.1016/j.scitotenv.2020.139140
T. Verdonck, B. Baesens, M. Óskarsdóttir, et al., Mach. Learn. 113 (2024) 3917-3928.
doi: 10.1007/s10994-021-06042-2
V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Prog. Artif. Intell. 5 (2016) 65-75.
doi: 10.1007/s13748-015-0080-y
M. Tamtaji, S. Chen, Z. Hu, et al., J. Phys. Chem. C 127 (2023) 9992-10000.
doi: 10.1021/acs.jpcc.3c00765
N.M. Sirakov, T. Shahnewaz, A. Nakhmani, Electronics 13 (2024) 282.
doi: 10.3390/electronics13020282
A. Tharwat, T. Gaber, A. Ibrahim, et al., AI Commun. 30 (2017) 169-190.
doi: 10.3233/AIC-170729
B. Conroy, R. Nayak, A.L.R. Hidalgo, et al., Microporous Mesoporous Mater. 335 (2022) 111802.
doi: 10.1016/j.micromeso.2022.111802
Y. Liu, X. Zou, S. Ma, et al., Acta Mater. 238 (2022) 118195.
doi: 10.1016/j.actamat.2022.118195
Y. Liu, J. -M. Wu, M. Avdeev, et al., Adv. Theory Simul. 3 (2020) 1900215.
doi: 10.1002/adts.201900215
M.Y. Shams, A.M. Elshewey, E. -S.M. El-kenawy, et al., Multimed. Tools Appl. 83 (2024) 35307-35334.
D.P. Kuttichira, S. Gupta, D. Nguyen, et al., Knowl. -Based Syst. 241 (2022) 108238.
doi: 10.1016/j.knosys.2022.108238
S. Pothuganti, Int. J. Adv. Res. Electr. Electron. Instrum. Eng 7 (2018) 3692-3695.
I. Tougui, A. Jilbab, J. El Mhamdi, Healthc. Inform. Res. 27 (2021) 189-199.
doi: 10.4258/hir.2021.27.3.189
N. Khan, M. Nauman, A.S. Almadhor, et al., IEEE Access 12 (2024) 90299-90316.
doi: 10.1109/access.2024.3420415
H. Hakkoum, A. Idri, I. Abnane, Eng. Appl. Artif. Intell. 131 (2024) 107829.
doi: 10.1016/j.engappai.2023.107829
M. Lu, F. Gao, Y. Tan, et al., ACS Appl. Mater. Interfaces 16 (2024) 3593-3604.
doi: 10.1021/acsami.3c18490
Q. Fu, T. Xu, D. Wang, et al., Carbon 223 (2024) 119045.
doi: 10.1016/j.carbon.2024.119045
L. v. Rueden, S. Mayer, K. Beckh, et al., IEEE Trans. Knowl. Data Eng. 35 (2023) 614-633.
Y. Liu, B. Guo, X. Zou, et al., Energy Storage Mater. 31 (2020) 434-450.
doi: 10.3390/ijerph17020434
J. Li, J. Wang, H. Mu, et al., ACS ES & T Eng. 3 (2023) 1258-1266.
N.K. Pandit, D. Roy, S.C. Mandal, et al., J. Phys. Chem. Lett. 13 (2022) 7583-7593.
doi: 10.1021/acs.jpclett.2c01401
J. Timoshenko, D. Lu, Y. Lin, et al., J. Phys. Chem. Lett. 8 (2017) 5091-5098.
doi: 10.1021/acs.jpclett.7b02364
H. Mashhadimoslem, A. Ghaemi, Environ. Sci. Pollut. Res. 30 (2023) 4166-4186.
doi: 10.1007/s11356-022-22508-9
H. Lee, Y. Choi, Chemosphere 350 (2024). Doi: https://doi.org/10.1016/j.chemosphere.2023.141003.
doi: 10.1016/j.chemosphere.2023.141003
R. Ahmad Aftab, S. Zaidi, A. Aslam Parwaz Khan, et al., Alex. Eng. J. 71 (2023) 355-369.
doi: 10.1016/j.aej.2023.03.055
S. Alnaimat, O. Mohsen, H. Elnakar, J. Environ. Manage. 370 (2024) 122857.
doi: 10.1016/j.jenvman.2024.122857
S. Jiang, W. Xu, Q. Xia, et al., J. Hazard. Mater. 471 (2024) 134309.
doi: 10.1016/j.jhazmat.2024.134309
N. Huang, K. Gao, W. Yang, et al., Bioresour. Technol. 361 (2022) 127710.
doi: 10.1016/j.biortech.2022.127710
J. Wu, J. Zhang, G. Qian, et al., Appl. Catal. A: Gen. 668 (2023) 119487.
doi: 10.1016/j.apcata.2023.119487
K. Motaev, M. Molokeev, B. Sultanov, et al., Ind. Eng. Chem. Res. 62 (2023) 20658-20666.
doi: 10.1021/acs.iecr.3c03147
X. Chang, Z. -J. Zhao, Z. Lu, et al., Nat. Nanotechnol. 18 (2023) 611-616.
doi: 10.1038/s41565-023-01344-z
X. Lin, X. Du, S. Wu, et al., Nat. Commun. 15 (2024) 8169.
doi: 10.1038/s41467-024-52519-8
T. Hajilounezhad, R. Bao, K. Palaniappan, et al., npj Comput. Mater. 7 (2021) 134.
doi: 10.1038/s41524-021-00603-8
P. Solís-Fernández, H. Ago, ACS Appl. Nano Mater. 5 (2022) 1356-1366.
doi: 10.1021/acsanm.1c03928
U. Kajendirarajah, M. Olivia Aviles, F. Lagugne-Labarthet, Phys. Chem. Chem. Phys. 22 (2020) 17857-17866.
doi: 10.1039/d0cp02950e
S. Xiang, P. Huang, J. Li, et al., Phys. Chem. Chem. Phys. 24 (2022) 5116-5124.
doi: 10.1039/d1cp05513e
J. Timoshenko, D. Lu, Y. Lin, et al., J. Phys. Chem. Lett. 8 (2017) 5091-5098.
doi: 10.1021/acs.jpclett.7b02364
D. -Y. Xing, X. -D. Zhao, C. -S. He, et al., Chin. Chem. Lett. 35 (2024) 109436.
doi: 10.1016/j.cclet.2023.109436
Z. Li, S. Wang, W.S. Chin, et al., J. Mater. Chem. A 5 (2017) 24131-24138.
doi: 10.1039/C7TA01812F
R. Jinnouchi, R. Asahi, J. Phys. Chem. Lett. 8 (2017) 4279-4283.
doi: 10.1021/acs.jpclett.7b02010
M.T.M. Koper, Nanoscale 3 (2011) 2054-2073.
doi: 10.1039/c0nr00857e
J. Lim, C. -Y. Liu, J. Park, et al., ACS Catal. 11 (2021) 7568-7577.
doi: 10.1021/acscatal.1c01413
H. Zhang, M. Jin, Y. Xiong, et al., Acc. Chem. Res. 46 (2013) 1783-1794.
doi: 10.1021/ar300209w
W. Shu, J. Li, J.X. Liu, et al., J. Am. Chem. Soc. 146 (2024) 8737-8745.
doi: 10.1021/jacs.4c01524
T. Chantarojsiri, J.W. Ziller, J.Y. Yang, Chem. Sci. 9 (2018) 2567-2574.
doi: 10.1039/c7sc04486k
X. Dai, T. Liu, Y. Du, et al., Chin. Chem. Lett. (2024) 110548. DOI: https://doi.org/10.1016/j.cclet.2024.110548.
doi: 10.1016/j.cclet.2024.110548
F.T. de Oliveira, A. Chanda, D. Banerjee, et al., Science 315 (2007) 835-838.
doi: 10.1126/science.1133417
T.H. Parsell, R.K. Behan, M.T. Green, et al., J. Am. Chem. Soc. 128 (2006) 8728-8729.
doi: 10.1021/ja062332v
H. Wang, M. Luo, Y. Wang, et al., Chin. Chem. Lett. (2024) 110348. DOI: https://doi.org/10.1016/j.cclet.2024.110348.
doi: 10.1016/j.cclet.2024.110348
R. Gupta, T. Taguchi, B. Lassalle-Kaiser, et al., PNAS Nexus 112 (2015) 5319-5324.
doi: 10.1073/pnas.1422800112
T.Z.H. Gani, H.J. Kulik, ACS Catal. 8 (2018) 975-986.
doi: 10.1021/acscatal.7b03597
A. Nandy, J. Zhu, J.P. Janet, et al., ACS Catal. 9 (2019) 8243-8255.
doi: 10.1021/acscatal.9b02165
M. Bajdich, M. García-Mota, A. Vojvodic, et al., J. Am. Chem. Soc. 135 (2013) 13521-13530.
doi: 10.1021/ja405997s
S. Back, K. Tran, Z.W. Ulissi, ACS Catal. 9 (2019) 7651-7659.
doi: 10.1021/acscatal.9b02416
S. Park, N. Lee, J.O. Park, et al., ACS Mater. Lett. 6 (2023) 66-72.
doi: 10.54912/jci.2022.0022
Y. Han, J. Xu, W. Xie, et al., ACS Catal. 13 (2023) 5104-5113.
doi: 10.1021/acscatal.3c00658
Y. Ji, P. Liu, Y. Huang, Phys. Chem. Chem. Phys. 25 (2023) 5827-5835.
doi: 10.1039/d2cp04635k
S. Mallakpour, M. Lormahdiabadi, Langmuir 38 (2022) 4065-4076.
doi: 10.1021/acs.langmuir.2c00091
H. Li, Z. Ai, L. Yang, et al., Bioresour. Technol. 369 (2023) 128417.
doi: 10.1016/j.biortech.2022.128417
W. Zhang, R. Chen, J. Li, et al., Biochar 5 (2023) 25.
doi: 10.1007/s42773-023-00225-x
Y. Li, R. Gupta, S. You, Bioresour. Technol. 359 (2022) 127511.
doi: 10.1016/j.biortech.2022.127511
L. Leng, X. Lei, N. Abdullah Al-Dhabi, et al., Chem. Eng. J. 485 (2024) 149862.
doi: 10.1016/j.cej.2024.149862
J. Peng, Y. He, C. Zhou, et al., Chin. Chem. Lett. 32 (2021) 1626-1636.
doi: 10.1016/j.cclet.2020.10.026
D. Chu, Z. Ji, X. Zhang, et al., N. J. Chem. 47 (2023) 21883-21896.
doi: 10.1039/d3nj04124g
E.M. Khabushev, D.V. Krasnikov, O.T. Zaremba, et al., J. Phys. Chem. Lett. 10 (2019) 6962-6966.
doi: 10.1021/acs.jpclett.9b02777
A. Eftekhari, H. Garcia, Mater. Today Chem. 4 (2017) 1-16.
doi: 10.1016/j.mtchem.2017.02.003
M.D. T, Z. Hou, K. Tsuda, J. Chem. Phys. 148 (2018) 241716.
doi: 10.1063/1.5018065
A. Cortijo, M.A.H. Vozmediano, Nucl. Phys. B 763 (2007) 293-308.
doi: 10.1016/j.nuclphysb.2006.10.031
F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano 5 (2011) 26-41.
doi: 10.1021/nn102598m
B. Motevalli, B. Sun, A.S. Barnard, J. Phys. Chem. C 124 (2020) 7404-7413.
doi: 10.1021/acs.jpcc.9b10615
X. Zhang, J. Liu, R. Li, et al., J. Colloid Interface Sci. 645 (2023) 956-963.
doi: 10.1016/j.jcis.2023.05.011
S. Lin, H. Xu, Y. Wang, et al., J. Mater. Chem. A 8 (2020) 5663-5670.
doi: 10.1039/c9ta13404b
X. Wan, Z. Zhang, H. Niu, et al., J. Phys. Chem. Lett. 12 (2021) 6111-6118.
doi: 10.1021/acs.jpclett.1c01526
L. Wu, T. Guo, T. Li, iScience 24 (2021) 102398.
doi: 10.1016/j.isci.2021.102398
L. Wu, T. Guo, T. Li, J. Mater. Chem. A 8 (2020) 19290-19299.
doi: 10.1039/d0ta06207c
N.K. Wagh, S.S. Shinde, C.H. Lee, et al., Nano-Micro Lett. 14 (2022) 190.
doi: 10.1007/s40820-022-00927-0
Q. Fu, T. Xu, C. He, et al., Langmuir 40 (2024) 10726-10736.
doi: 10.1021/acs.langmuir.4c00803
Q.M. Zhang, Z.Y. Wang, H. Zhang, et al., Phys. Chem. Chem. Phys. 26 (2024) 11037-11047.
doi: 10.1039/d4cp00325j
Y. -J. Zhang, V. Sethuraman, R. Michalsky, et al., ACS Catal. 4 (2014) 3742-3748.
doi: 10.1021/cs5012298
B.H.R. Suryanto, C.S.M. Kang, D. Wang, et al., ACS Energy Lett. 3 (2018) 1219-1224.
doi: 10.1021/acsenergylett.8b00487
M. Zafari, D. Kumar, M. Umer, et al., J. Mater. Chem. A 8 (2020) 5209-5216.
doi: 10.1039/c9ta12608b
T. Liu, X. Zhao, X. Liu, et al., J. Energy Chem. 81 (2023) 93-100.
doi: 10.1016/j.jechem.2023.02.018
Y. Liu, X. Ge, Z. Yang, et al., J. Power Sources 545 (2022) 231946.
doi: 10.1016/j.jpowsour.2022.231946
I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., Commun. ACM 63 (2020) 139–144.
doi: 10.1145/3422622
X. Luo, Z. Wang, P. Gao, et al., npj Comput. Mater. 10 (2024) 254.
doi: 10.1007/978-3-031-60441-6_17
Y. Liu, Z. Yang, Z. Yu, et al., J. Materiom. 9 (2023) 798-816.
doi: 10.1016/j.jmat.2023.05.001
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Xiangyue Li , Dexin Zhu , Kunmin Pan , Xiaoye Zhou , Jiaming Zhu , Yingxue Wang , Yongpeng Ren , Hong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870
Zonglin Li , Shihua Zou , Zining Wang , Georgeta Postole , Liang Hu , Hongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Yicheng Li , Qian Liu , Tianhao Li , Hao Bi , Zhurui Shen . Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review. Chinese Chemical Letters, 2025, 36(9): 110698-. doi: 10.1016/j.cclet.2024.110698
Xiaoxiao Wang , Bolun Wang , Fenfen Ji , Jie Yan , Jiacheng Fang , Doudou Zhang , Ji Xu , Jing Ji , Xinran Hao , Hemi Luan , Yanjun Hong , Shulan Qiu , Min Li , Zhu Yang , Wenlan Liu , Xiaodong Cai , Zongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183
Hao Li , Hanzhi Lu , Linlin Hu , Xueli Zhang , Hua Shao , Fulun Li , Yanfei Shen . Dynamic surface-enhanced Raman spectroscopy-based metabolic profiling: A novel pathway to overcoming antifungal resistance. Chinese Chemical Letters, 2025, 36(7): 110342-. doi: 10.1016/j.cclet.2024.110342
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Yiwen Lin , Yijie Chen , Chunhui Deng , Nianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Yusheng Lu , Chaofeng Huang , Zhigang Lei , Mingyuan Zhu . Catalytic effects of structural design in N-modified carbon materials for the hydrochlorination of acetylene. Chinese Chemical Letters, 2025, 36(8): 110583-. doi: 10.1016/j.cclet.2024.110583
Huirong LIU , Hao XU , Dunru ZHU , Junyong ZHANG , Chunhua GONG , Jingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066
Yinghao Zhang , Ke Shao , Yihang Zhu , Haokun Zhang , Yinuo Zhuo , Huihui Bao , Yeye Ai , Yongguang Li . Unanticipated optical properties of π-conjugated cyclometalated Pt(Ⅱ) complexes for advanced information storage and anti-counterfeiting materials. Chinese Chemical Letters, 2025, 36(9): 110735-. doi: 10.1016/j.cclet.2024.110735
Lu Cheng , Jinghua Quan , Hongyan Li . Recent advances in antimony-based anode materials for potassium-ion batteries: Material selection, structural design and storage mechanisms. Chinese Chemical Letters, 2025, 36(9): 110685-. doi: 10.1016/j.cclet.2024.110685