An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging
-
* Corresponding author.
E-mail address: wangzl@xidian.edu.cn (Z. Wang).
Citation:
Xianghan Zhang, Yuan Qin, Huaicong Zhang, Yutian Cao, Haixing Zhu, Yingdi Tang, Zimeng Ma, Zehua Li, Jialin Zhou, Qunyan Dong, Peng Yang, Yuqiong Xia, Zhongliang Wang. An aggregation-independent and rotor-specific TPE-cyanine probe for in vivo near-infrared fluorescent imaging[J]. Chinese Chemical Letters,
;2025, 36(9): 110715.
doi:
10.1016/j.cclet.2024.110715
G. Obaid, J.P. Celli, M. Broekgaarden, et al., Nat. Rev. Bioeng. 2 (2024) 752– 769.
doi: 10.1038/s44222-024-00196-z
C. Chen, X. Zhang, Z. Gao, G. Feng, D. Ding, Nat. Protoc. 19 (2024) 2408–2434.
doi: 10.1038/s41596-024-00990-4
H. Li, B. Jin, Y. Wang, et al., Adv. Mater. 35 (2023) 2210085.
doi: 10.1002/adma.202210085
X.T. Gong, J. Zhuang, K.C. Chong, et al., Adv. Mater. 36 (2024) 2402853.
doi: 10.1002/adma.202402853
H. Zhao, N. Li, C. Ma, et al., Chin. Chem. Lett. 34 (2023) 107699.
doi: 10.1016/j.cclet.2022.07.042
Z. Zhao, W. He, B.Z. Tang, Acc. Mater. Res. 2 (2021) 1251–1260.
doi: 10.1021/accountsmr.1c00202
C. Chen, X. Ni, H.W. Tian, et al., Angew. Chem. Int. Ed. 59 (2020) 10008–10012.
doi: 10.1002/anie.201916430
N. Wang, H. Yao, Q. Tao, et al., Chin. Chem. Lett. 33 (2022) 252–256.
doi: 10.1016/j.cclet.2021.06.092
X. Cheng, Y. Pu, S. Ye, et al., Adv. Mater. 36 (2024) 2305779.
doi: 10.1002/adma.202305779
R. Miao, J. Li, C. Wang, et al., Adv. Sci. 9 (2022) 2104609.
doi: 10.1002/advs.202104609
M.K. Kuimova, S.W. Botchway, A.W. Parker, et al., Nat. Chem. 1 (2009) 69–73.
doi: 10.1038/nchem.120
I.A. Ioannou, N.J. Brooks, M.K. Kuimova, Y. Elani, JACS Au 4 (2024) 2041–2049.
doi: 10.1021/jacsau.4c00237
X. Peng, Z. Yang, J. Wang, et al., J. Am. Chem. Soc. 133 (2011) 6626–6635.
doi: 10.1021/ja1104014
L. Hao, Z.W. Li, D.Y. Zhang, et al., Chem. Sci. 10 (2019) 1285–1293.
doi: 10.1039/C8SC04242J
M. Paez-Perez, M.K. Kuimova, Angew. Chem. Int. Ed. 63 (2024) e202311233.
doi: 10.1002/anie.202311233
M. Paez-Perez, I. Lopez-Duarte, A. Vysniauskas, N.J. Brooks, M.K. Kuimova, Chem. Sci. 12 (2021) 2604–2613.
doi: 10.1039/D0SC05874B
C.H. Wolstenholme, H. Hu, S. Ye, et al., J. Am. Chem. Soc. 142 (2020) 17515–17523.
doi: 10.1021/jacs.0c07245
S. Ye, H. Zhang, J. Fei, C.H. Wolstenholme, X. Zhang, Angew. Chem. Int. Ed. 60 (2021) 1339–1346.
doi: 10.1002/anie.202011108
J.E. Chambers, N. Zubkov, M. Kubánková, et al., Sci. Adv. 8 (2022) eabm2094.
doi: 10.1126/sciadv.abm2094
H. Li, W. Shi, X. Li, et al., J. Am. Chem. Soc. 141 (2019) 18301–18307.
doi: 10.1021/jacs.9b09722
Q. Chen, H. Fang, X. Shao, et al., Nat. Commun. 11 (2020) 6290.
doi: 10.1038/s41467-020-20067-6
J. Liu, W. Zhang, C. Zhou, et al., J. Am. Chem. Soc. 144 (2022) 13586–13599.
doi: 10.1021/jacs.2c03832
S. Wang, W.X. Ren, J.T. Hou, et al., Chem. Soc. Rev. 50 (2021) 8887–8902.
doi: 10.1039/D1CS00083G
J. Yin, M. Peng, W. Lin, Anal. Chem. 91 (2019) 8415–8421.
doi: 10.1021/acs.analchem.9b01293
F. Würthner, Angew. Chem. Int. Ed. 59 (2020) 14192–14196.
doi: 10.1002/anie.202007525
L.L. Yang, H. Wang, J. Zhang, et al., Nat. Commun. 15 (2024) 999.
doi: 10.1038/s41467-024-45271-6
J. Li, J. Wang, H. Li, et al., Chem. Soc. Rev. 49 (2020) 1144–1172.
doi: 10.1039/C9CS00495E
J. Mei, Y. Hong, J.W.Y. Lam, et al., Adv. Mater. 26 (2014) 5429–5479.
doi: 10.1002/adma.201401356
H. Qian, M.E. Cousins, E.H. Horak, et al., Nat. Chem. 9 (2017) 83–87.
doi: 10.1038/nchem.2612
Y. Yang, X. Su, C.N. Carroll, I. Aprahamian, Chem. Sci. 3 (2012) 610–613.
doi: 10.1039/C1SC00658D
D. Tu, J. Zhang, Y. Zhang, et al., J. Am. Chem. Soc. 143 (2021) 11820–11827.
doi: 10.1021/jacs.1c05647
X. Zhang, J. Gao, Y. Tang, et al., Nat. Commun. 13 (2022) 3513.
doi: 10.1038/s41467-022-31136-3
Q. Jia, R. Zhang, Y. Wang, et al., Sci. Bull. 67 (2022) 288–298.
doi: 10.1016/j.scib.2021.11.003
Y. Zhang, C. Yan, Q. Zheng, et al., Angew. Chem. Int. Ed. 60 (2021) 9553–9561.
doi: 10.1002/anie.202017349
J.L. Tanyi, L.M. Randall, S.K. Chambers, et al., Clin. Oncol. 41 (2023) 276–284.
R. Voelker, JAMA 327 (2022) 27.
G.T. Kennedy, F.S. Azari, E. Bernstein, et al., JAMA Surg. 156 (2021) 1043–1050.
doi: 10.1001/jamasurg.2021.3757
S. Blair, M. Garcia, T. Davis, et al., Sci. Transl. Med. 13 (2021) eaaw7067.
doi: 10.1126/scitranslmed.aaw7067
A.N. Ramya, M.M. Joseph, J.B. Nair, et al., ACS Appl. Mater. Interfaces 8 (2016) 10220–10225.
doi: 10.1021/acsami.6b01908
D.T. Jayaram, S. Ramos-Romero, B.H. Shankar, et al., ACS Chem. Biol. 11 (2015) 104–112.
S. Chen, Y. Hong, Y. Zeng, et al., Chem. Eur. J. 21 (2015) 4315–4320.
doi: 10.1002/chem.201405658
S. Chen, Y. Hong, Y. Liu, et al., J. Am. Chem. Soc. 135 (2013) 4926–4929.
doi: 10.1021/ja400337p
X. Zhang, B. Wang, Y. Xia, et al., ACS Appl. Mater. Interfaces 10 (2018) 25146–25153.
doi: 10.1021/acsami.8b07727
M. Fang, S. Xia, J. Bi, et al., Chem. Commun. 54 (2018) 1133–1136.
doi: 10.1039/C7CC08986D
D. Ding, K. Li, B. Liu, B.Z. Tang, Acc. Chem. Res. 46 (2013) 2441–2453.
doi: 10.1021/ar3003464
H. Niu, J. Liu, H.M. O’Connor, et al., Chem. Soc. Rev. 52 (2023) 2322–2357.
doi: 10.1039/D1CS01097B
H. Miyasaka, Acc. Chem. Res. 46 (2013) 248–257.
doi: 10.1021/ar300102t
W. Chi, J. Chen, W. Liu, et al., J. Am. Chem. Soc. 142 (2020) 6777–6785.
doi: 10.1021/jacs.0c01473
N. Meher, P.K. Iyer, Angew. Chem. Int. Ed. 57 (2018) 8488–8492.
doi: 10.1002/anie.201802842
X. Hu, Z. Fang, F. Sun, et al., Angew. Chem. Int. Ed. 63 (2024) e202401036.
doi: 10.1002/anie.202401036
K. Lei, A. Kurum, M. Kaynak, et al., Nat. Biomed. Eng. 5 (2021) 1411–1425.
doi: 10.1038/s41551-021-00826-6
S. Chakraborty, M. Doktorova, T.R. Molugu, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 21896–21905.
doi: 10.1073/pnas.2004807117
W. Fan, K. Adebowale, L. Váncza, et al., Nature 626 (2024) 635–642.
doi: 10.1038/s41586-023-06991-9
Tong-Tong Zhou , Guan-Yu Ding , Xue Li , Li-Li Wen , Xiao-Xu Pang , Ying-Chen Duan , Ju-Yang He , Guo-Gang Shan , Zhong-Min Su . Design of near-infrared aggregation-induced emission photosensitizers by π-bridge engineering for boosting theranostic efficacy. Chinese Chemical Letters, 2025, 36(6): 110341-. doi: 10.1016/j.cclet.2024.110341
Biao Huang , Tao Tang , Fushou Liu , Shi-Hui Chen , Zhi-Ling Zhang , Mingxi Zhang , Ran Cui . Quantum dots boost large-view NIR-Ⅱ imaging with high fidelity for fluorescence-guided tumor surgery. Chinese Chemical Letters, 2024, 35(12): 109694-. doi: 10.1016/j.cclet.2024.109694
Shuaige Bai , Shuai Huang , Ting Luo , Bin Feng , Yanpeng Fang , Feiyi Chu , Jie Dong , Wenbin Zeng . Debut of a responsive chemiluminescent probe for butyrylcholinesterase: Application in biological imaging and pesticide residue detection. Chinese Chemical Letters, 2025, 36(3): 110054-. doi: 10.1016/j.cclet.2024.110054
Rongjian Chen , Jiahui Liu , Caixia Lin , Yuanming Li , Yanhou Geng , Yaofeng Yuan . Synthesis and properties of tetraphenylethene cationic cyclophanes based on o-carborane skeleton. Chinese Chemical Letters, 2024, 35(12): 110074-. doi: 10.1016/j.cclet.2024.110074
Shuo Li , Qianfa Liu , Lijun Mao , Xin Zhang , Chunju Li , Da Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791
Jun-Jie Fang , Zheng Liu , Yun-Peng Xie , Xing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345
Yunli Xu , Xuwen Da , Lei Wang , Yatong Peng , Wanpeng Zhou , Xiulian Liu , Yao Wu , Wentao Wang , Xuesong Wang , Qianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168
Min Liu , Bin Feng , Feiyi Chu , Duoyang Fan , Fan Zheng , Fei Chen , Wenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043
Kun Zhang , Xin-Yue Lou , Yan Wang , Weiwei Huan , Ying-Wei Yang . Emission enhancement induced by the supramolecular assembly of leggero pillar[5]arenes for the detection and separation of silver ions. Chinese Chemical Letters, 2025, 36(6): 110464-. doi: 10.1016/j.cclet.2024.110464
Yi Liu , Peng Lei , Yang Feng , Shiwei Fu , Xiaoqing Liu , Siqi Zhang , Bin Tu , Chen Chen , Yifan Li , Lei Wang , Qing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571
Tiancong Shi , Xi Chen , Xiao Zhou , Hongyi Zhang , Fuping Han , Lihan Cai , Wen Sun , Jianjun Du , Jiangli Fan , Xiaojun Peng . Azaindole-based asymmetric pentamethine cyanine dye for mitochondrial pH detection and near-infrared ratiometric fluorescence imaging of mitophagy. Chinese Chemical Letters, 2025, 36(6): 110408-. doi: 10.1016/j.cclet.2024.110408
Xuejian Xing , Pan Zhu , E Pang , Shaojing Zhao , Yu Tang , Zheyu Hu , Quchang Ouyang , Minhuan Lan . D-A-D-structured boron-dipyrromethene with aggregation-induced enhanced phototherapeutic efficiency for near-infrared fluorescent and photoacoustic imaging-guided synergistic photodynamic and photothermal cancer therapy. Chinese Chemical Letters, 2024, 35(10): 109452-. doi: 10.1016/j.cclet.2023.109452
Chaochao Jin , Kai Li , Jiongpei Zhang , Zhihua Wang , Jiajing Tan . N,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532
You Zhou , Li-Sheng Wang , Shuang-Gui Lei , Bo-Cheng Tang , Zhi-Cheng Yu , Xing Li , Yan-Dong Wu , Kai-Lu Zheng , An-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799
Haibo Wan , Zhengzhong Lv , Jicai Jiang , Xuefeng Cheng , Qingfeng Xu , Haibin Shi , Jianmei Lu . Multidimensional detection of roxarsone via AIE-based sulfates. Chinese Chemical Letters, 2025, 36(3): 110023-. doi: 10.1016/j.cclet.2024.110023
Huamei Zhang , Jingjing Liu , Mingyue Li , Shida Ma , Xucong Zhou , Aixia Meng , Weina Han , Jin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020
Dandan Tang , Ningge Xu , Yuyang Fu , Wei Peng , Jinsheng Wu , Heng Liu , Fabiao Yu . Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury. Chinese Chemical Letters, 2025, 36(5): 110082-. doi: 10.1016/j.cclet.2024.110082
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Keliang Li , Guoqiang Dong , Shanchao Wu , Chunquan Sheng . Discovery of an activatable near-infrared fluorescent and theranostic PROTAC for tumor-targeted detecting and degrading of BRD4. Chinese Chemical Letters, 2025, 36(6): 110280-. doi: 10.1016/j.cclet.2024.110280
Xianzhu Luo , Feifei Yu , Rui Wang , Tian Su , Pan Luo , Pengfei Wen , Fabiao Yu . A near-infrared two-photon fluorescent probe for the detection of HClO in inflammatory and tumor-bearing mice. Chinese Chemical Letters, 2025, 36(7): 110531-. doi: 10.1016/j.cclet.2024.110531