Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review
-
* Corresponding author.
E-mail address: shenzhurui@nankai.edu.cn (Z. Shen).
Citation:
Yicheng Li, Qian Liu, Tianhao Li, Hao Bi, Zhurui Shen. Recent achievements in rare earth modified metal oxides for environmental and energy applications: A review[J]. Chinese Chemical Letters,
;2025, 36(9): 110698.
doi:
10.1016/j.cclet.2024.110698
R.A. Barreto, Fossil fuels, Econ. Model. 75 (2018) 196–220.
doi: 10.1016/j.econmod.2018.06.019
D. Gielen, F. Boshell, D. Saygin, et al., Energy Strategy Rev. 24 (2019) 38–50.
doi: 10.1016/j.esr.2019.01.006
S.A. Neves, A.C. Marques, Res. Transp. Econ. 90 (2021) 101036.
doi: 10.1016/j.retrec.2021.101036
R. Li, H. Lee, Renew. Energy 189 (2022) 435–443.
doi: 10.1016/j.renene.2022.03.011
A. Rehman, M. Radulescu, L.M. Cismas, et al., Energies. 15 (2022) 7180.
doi: 10.3390/en15197180
M.R. Hossain, S. Singh, G.D. Sharma, S.A. Apostu, P. Bansal, Energy Policy 174 (2023) 113469.
doi: 10.1016/j.enpol.2023.113469
Y. Liu, H. Tang, A. Muhammad, G. Huang, Greenh. Gases 9 (2019) 160–174.
doi: 10.1002/ghg.1848
Y. Sun, Y. Jiang, H. Wei, et al., Nano Today 57 (2024) 102378.
doi: 10.1016/j.nantod.2024.102378
Z. Long, Q. Li, T. Wei, G. Zhang, Z. Ren, J. Hazard. Mater. 395 (2020) 122599.
doi: 10.1016/j.jhazmat.2020.122599
X. Li, W. Wang, F. Dong, et al., ACS Catal. 11 (2021) 4739–4769.
doi: 10.1021/acscatal.0c05354
H. Wang, X. Li, X. Zhao, et al., Chinese J. Catal. 43 (2022) 178–214.
doi: 10.1016/S1872-2067(21)63910-4
N. Liu, Z. Sun, H. Zhang, et al., Sci. Total Environ. 875 (2023) 162603.
doi: 10.1016/j.scitotenv.2023.162603
M. Zeng, Y. Li, M. Mao, et al., ACS Catal. 5 (2015) 3278–3286.
doi: 10.1021/acscatal.5b00292
W. Qian, Z. Wu, Y. Jia, et al., Electrochem. Commun. 81 (2017) 124–127.
doi: 10.1016/j.elecom.2017.06.017
Y. Bai, J. Zhao, S. Feng, X. Liang, C. Wang, ChemComm 55 (2019) 4651–4654.
doi: 10.1039/c9cc01479a
Y. Shi, M. Li, Y. Yu, B. Zhang, Energy Environ. Sci. 13 (2020) 4564–4582.
doi: 10.1039/d0ee02577a
A. Mahmood, W. Guo, H. Tabassum, R. Zou, Adv. Energy Mater. 6 (2016) 1600423.
doi: 10.1002/aenm.201600423
L. Peng, L. Shang, T. Zhang, G.I.N. Waterhouse, Adv. Energy Mater. 10 (2020) 2003018.
doi: 10.1002/aenm.202003018
Z. Pu, T. Liu, I.S. Amiinu, et al., Adv. Funct. Mater. 30 (2020) 2004009.
doi: 10.1002/adfm.202004009
S. Sarkar, A. Biswas, E.E. Siddharthan, R. Thapa, R.S. Dey, ACS Nano 16 (2022) 7890–7903.
doi: 10.1021/acsnano.2c00547
K. Hagos, J. Zong, D. Li, C. Liu, X. Lu, Renew. Sustain. Energy Rev. 76 (2017) 1485–1496.
doi: 10.1016/j.rser.2016.11.184
J. Filer, H.H. Ding, S. Chang, Water. 11 (2019) 921.
doi: 10.3390/w11050921
S. Manikandan, S. Vickram, R. Sirohi, et al., Bioresour. Technol. 372 (2023) 128679.
doi: 10.1016/j.biortech.2023.128679
S. Kattel, W. Yu, X. Yang, et al., Angew. Chem. Int. Ed. 55 (2016) 7968–7973.
doi: 10.1002/anie.201601661
J.C. Vedrine, Catalysts 7 (2017) 341.
doi: 10.3390/catal7110341
J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8 (2018) 1702774.
doi: 10.1002/aenm.201702774
R. Lang, X. Du, Y. Huang, et al., Chem. Rev. 120 (2020) 11986–12043.
doi: 10.1021/acs.chemrev.0c00797
Y. Li, Y. Zhang, K. Qian, W. Huang, ACS Catal. 12 (2022) 1268–1287.
doi: 10.1021/acscatal.1c04854
X. Chen, H. Wang, W. An, L. Liu, W. Cui, Prog. Chem. 34 (2022) 2361–2372.
H. Wu, D. Zhang, B.X. Lei, Z.Q. Liu, ChemPlusChem 87 (2022) e202200097.
doi: 10.1002/cplu.202200097
S.E. Jun, J.K. Lee, S. Ryu, H.W. Jang, ChemCatChem 15 (2023) e202300926.
doi: 10.1002/cctc.202300926
J. Huang, L. Zou, S. Wang, et al., J. Solid State Chem. 336 (2024) 124779.
doi: 10.1016/j.jssc.2024.124779
Y. You, S. Huang, M. Chen, K.M. Parker, Z. He, J. Hazard. Mater. 424 (2022) 127376.
doi: 10.1016/j.jhazmat.2021.127376
Q. Cheng, M. Huang, L. Xiao, et al., ACS Catal. 13 (2023) 4021–4029.
doi: 10.1021/acscatal.2c06228
W. Du, Y. Wu, Z. Nie, X. Su, T. Zuo, Rare Metal Mater. Eng. 35 (2006) 1345–1349.
S. Zhang, S.E. Saji, Z. Yin, et al., Adv. Mater. 33 (2021) 2005988.
doi: 10.1002/adma.202005988
Y. Zhong, X. Qian, C. Ma, K. Liu, H. Zhang, Acta Chim. Sin. 81 (2023) 1624–1632.
doi: 10.6023/a23070323
H. Xue, G. Lv, L. Wang, T.A. Zhang, Miner. Eng. 215 (2024) 108796.
doi: 10.1016/j.mineng.2024.108796
Y. Zhang, M. Yang, Y.X. Gao, F. Wang, X. Huang, Sci. China Chem. 46 (2003) 252–258.
doi: 10.1007/BF02883045
A. Witkowska, B. Padlyak, J. Rybicki, Opt. Mater. 30 (2008) 699–702.
doi: 10.1016/j.optmat.2007.02.013
J. Hao, K. Zhang, P. Ren, et al., J. Alloys Compd. 814 (2020) 152339.
doi: 10.1016/j.jallcom.2019.152339
A.U. Hasanah, P.L. Gareso, N. Rauf, D. Tahir, Chembioeng. Rev. 10 (2023) 698–710.
doi: 10.1002/cben.202300004
S.L. Liu, L.Y. Xu, S.J. Xie, Q.X. Wang, G.X. Xiong, Appl. Catal. A 211 (2001) 145–152.
doi: 10.1016/S0926-860X(00)00865-6
Z. Hou, W. Pei, X. Zhang, et al., J. Rare Earths 38 (2020) 819–839.
doi: 10.1016/j.jre.2020.01.011
J. Feng, X. Zhang, J. Wang, et al., Catal. Sci. Technol. 11 (2021) 6330–6343.
doi: 10.1039/d1cy01156a
W. Judge, K. Ng, G. Moldoveanu, et al., Hydrometallurgy 218 (2023) 106054.
doi: 10.1016/j.hydromet.2023.106054
G. Moldoveanu, G. Kolliopoulos, W. Judge, et al., Hydrometallurgy 223 (2024) 106194.
doi: 10.1016/j.hydromet.2023.106194
Y. Jiang, H. Fu, Z. Liang, et al., Chem. Soc. Rev. 53 (2024) 714–763.
doi: 10.1039/d3cs00708a
X. Wang, J. Wang, P. Wang, et al., Adv. Mater. 34 (2022) 2206540.
doi: 10.1002/adma.202206540
Y. Zhu, X. Wang, X. Zhu, et al., Small. 19 (2023) 2206531.
doi: 10.1002/smll.202206531
C. Fan, X. Wang, X. Wu, et al., Adv. Energy Mater. 13 (2023) 2203244.
doi: 10.1002/aenm.202203244
R. Zhao, Z. Chen, Q. Li, et al., Chem. Catal. 2 (2022) 3590–3606.
O. Malta, J. Non-Cryst. Solids 354 (2008) 4770–4776.
doi: 10.1016/j.jnoncrysol.2008.04.023
A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Chem. Soc. Rev. 50 (2021) 9817–9844.
doi: 10.1039/d1cs00330e
S. Li, L. Xia, J. Li, et al., Energy Environ. Mater. 7 (2024) e12560.
doi: 10.1002/eem2.12560
L. Li, S. Liu, L. Ying, et al., Int. J. Hydrogen Energy 85 (2024) 818–831.
doi: 10.1016/j.ijhydene.2024.08.364
J. Liu, P. Li, J. Bi, et al., J. Am. Chem. Soc. 145 (2023) 23037–23047.
doi: 10.1021/jacs.3c05562
S. Chen, Z. Zheng, Q. Li, et al., J. Mater. Chem. A. 11 (2023) 1944–1953.
doi: 10.1039/d2ta06801j
Y. Song, Z. Han, K. Song, T. Zhen, Front. Pharmacol. 11 (2020) 491.
doi: 10.3389/fphar.2020.00491
H. Xi, T. Li, Sci. Total Environ. 954 (2024) 176261.
doi: 10.1016/j.scitotenv.2024.176261
J.Q. Jiang, N.J.D. Graham, Water SA 24 (1998) 237–244.
N. Tambo, T. Kamei, Water Sci. Technol. 37 (1998) 31–41.
doi: 10.2166/wst.1998.0371
Y. Gan, C. Ding, B. Xu, et al., J. Hazard. Mater. 442, (2023) 130072.
doi: 10.1016/j.jhazmat.2022.130072
G.W. Kajjumba, E.J. Marti, Chemosphere 309 (2022) 136462.
doi: 10.1016/j.chemosphere.2022.136462
O. Tünay, Water Sci. Technol. 48 (2003) 43–52.
V.V. Samonin, M.L. Podvyaznikov, V.N. Solov'ev, et al., Russ. J. Appl. Chem. 86 (2013) 1220–1224.
doi: 10.1134/S1070427213080119
T. Zhou, S. Song, R. Min, X. Liu, G. Zhang, Mar. Pollut. Bull. 201 (2024) 116202.
doi: 10.1016/j.marpolbul.2024.116202
Y. Bai, H. Chen, H. Cheng, et al., Sep. Purif. Technol. 341 (2024) 126956.
doi: 10.1016/j.seppur.2024.126956
J. Wang, X. Guo, J. Hazard. Mater. 390 (2020) 122156.
doi: 10.1016/j.jhazmat.2020.122156
P.F. Pinheiro do Nascimento, E.L. de Barros Neto, J.F. de Sousa, et al., Chem. Eng. Echnol. 44 (2021) 2199–2209.
doi: 10.1002/ceat.202100295
Y. Zhang, W. Zhang, H. Zhang, D. He, Molecules, 28 (2023) 3231.
doi: 10.3390/molecules28073231
L. Ma, X. Dong, M. Chen, et al., Membranes, 7 (2017) 16.
doi: 10.3390/membranes7010016
M. Zhou, J. Chen, S. Yu, et al., Chem. Eng. J. 451, (2023) 139009.
doi: 10.1016/j.cej.2022.139009
P.D. Sutrisna, K.A. Kurnia, U.W.R. Siagian, S. Ismadji, I.G. Wenten, J. Environ. Chem. Eng. 10 (2022) 107532.
doi: 10.1016/j.jece.2022.107532
L. Li, M. Ye, X. Gan, T. Xiao, Z. Zhu, Desalination Water Treat. 304 (2023) 36–46.
doi: 10.5004/dwt.2023.29788
C. Comninellis, A. Kapalka, S. Malato, et al., J. Chem. Technol. Biotechnol. 83 (2008) 769–776.
doi: 10.1002/jctb.1873
K. Guo, Z. Wu, C. Chen, et al., Acc. Chem. Res. 55, (2022) 286–297.
doi: 10.1021/acs.accounts.1c00269
M.P. Rayaroth, C.T. Aravindakumar, N.S. Shah, et al., Chem. Eng. J. 430 (2022) 133002.
doi: 10.1016/j.cej.2021.133002
J.Y. Hu, Z.S. Wang, W.J. Ng, S.L. Ong, Water Res. 33 (1999) 2587–2592.
doi: 10.1016/S0043-1354(98)00482-5
Fahmi, W. Nishijima, M. Okada, J. Water Supply Res. Technol. 52 (2003) 291–297.
doi: 10.2166/aqua.2003.0027
E. Nazlabadi, E.K. Niaragh, M.R.A. Moghaddam, Desalination Water Treat. 228 (2021) 92–120.
doi: 10.5004/dwt.2021.27315
J. Chen, J. Wan, C. Li, Y. Wei, H. Shi, J. Hazard. Mater. 437 (2022) 129393.
doi: 10.1016/j.jhazmat.2022.129393
W. Pei, Y. Wang, Y. Liu, et al., Sep. Purif. Technol. 344 (2024) 127157.
doi: 10.1016/j.seppur.2024.127157
W. Zhao, G. Wang, P. Li, et al., ACS ES & T Water. 4 (2024) 1411–1421.
doi: 10.1021/acsestwater.3c00575
A. Wuorimaa, R. Jokela, R. Aksela, Nord. Pulp Paper Res. J. 21 (2006) 435–443.
doi: 10.3183/npprj-2006-21-04-p435-443
L. Ji, J. Liu, C. Qian, X. Chen, Chin. J. Org. Chem. 32 (2012) 254–265.
doi: 10.6023/cjoc1103243
L. An, T. Zhao, X. Yan, X. Zhou, P. Tan, Sci. Bull. 60 (2015) 55–64.
doi: 10.1007/s11434-014-0694-7
Q. Ma, Y. Xue, J. Guo, X. Peng, Catalysts. 13 (2023) 21.
S.C. Perry, S. Mavrikis, L. Wang, C.P. de Leon, Curr. Opin. Electrochem. 30 (2021) 100792.
doi: 10.1016/j.coelec.2021.100792
P.J. Espinoza-Montero, P. Alulema-Pullupaxi, B.A. Frontana-Uribe, C.E. Barrera-Diaz, Curr. Opin. Solid State Mater. Sci. 26 (2022) 100988.
doi: 10.1016/j.cossms.2022.100988
X. Yan, W.W. Shi, X.Z. Wang, New Carbon Mater. 37 (2022) 223–235.
doi: 10.1007/978-3-030-94514-5_23
W. Peng, H. Tan, X. Liu, F. Hou, J. Liang, Energy Fuels. 37 (2023) 17863–17874.
doi: 10.1021/acs.energyfuels.3c02732
Y. Liu, B. Wei, L. Yang, et al., J. Environ. Chem. Eng. 12 (2024) 112972.
doi: 10.1016/j.jece.2024.112972
W. Yuan, J. Li, H. Yang, et al., J. Electroanal. Chem. 971 (2024) 118604.
doi: 10.1016/j.jelechem.2024.118604
M. Cheng, Z. Li, T. Xu, et al., Electrochim. Acta. 430 (2022) 141091.
doi: 10.1016/j.electacta.2022.141091
I. Hota, A.K. Debnath, K.P. Muthe, K.S.K. Varadwaj, P. Parhi, Electroanalysis 32 (2020) 2521–2527.
doi: 10.1002/elan.202060099
P. Chen, J. Jia, Z. Cheng, et al., Arab. J. Chem. 17 (2024) 105624.
doi: 10.1016/j.arabjc.2024.105624
K. Song, H. Zhang, Z. Lin, et al., Adv. Funct. Mater. 34 (2024) 2312672.
doi: 10.1002/adfm.202312672
T.X. Huang, X. Cong, S.S. Wu, et al., Nat. Catal. 7 (2024) 1–9.
doi: 10.5194/agile-giss-5-29-2024
Y. Zhu, Q. Lin, Y. Zhong, et al., Energy Environ. Sci. 13 (2020) 3361–3392.
doi: 10.1039/d0ee02485f
Y. Ji, J. Liu, S. Hao, et al., Inorg. Chem. Front. 7 (2020) 2533–2537.
doi: 10.1039/d0qi00437e
Y. Jiang, Z. Liang, H. Fu, et al., J. Am. Chem. Soc. 146 (2024) 9012–9025.
doi: 10.1021/jacs.3c13367
D. Ghosh, D.J.L. Pradhan, Langmuir. 39 (2023) 3358–3370.
doi: 10.1021/acs.langmuir.2c03242
Y. Zhang, W. Liao, G. Zhang, J. Power Sources 512 (2021) 230514.
doi: 10.1016/j.jpowsour.2021.230514
X. Du, Y. Ding, X. Zhang, Appl. Surf. Sci. 562 (2021) 150227.
doi: 10.1016/j.apsusc.2021.150227
S. Shibli, M.A. Sha, J. Alloys Compd. 749 (2018) 250–261.
doi: 10.1016/j.jallcom.2018.03.274
C. Li, P. Wang, M. He, et al., Coord. Chem. Rev. 489 (2023) 215204.
doi: 10.1016/j.ccr.2023.215204
W. Zhang, A. Yu, H. Mao, et al., J. Am. Chem. Soc. 146 (2024) 21335–21347.
doi: 10.1021/jacs.4c02786
Q. Zhang, Y. Chen, S. Yan, et al., Energy Environ. Sci. 17 (2024) 2309–2314.
doi: 10.1039/d4ee00087k
D. Li, K. Yang, J. Lian, J. Yan, S. Liu, Adv. Energy Mater. 12 (2022) 2201070.
doi: 10.1002/aenm.202201070
P.P. Yang, M.R. Gao, Chem. Soc. Rev. 52 (2023) 4343–4380.
doi: 10.1039/d2cs00849a
I.U. Din, M.S. Shaharun, M.A. Alotaibi, A.I. Alharthi, A. Naeem, J. CO2 Util. 34 (2019) 20–33.
L. Song, Z. Liang, M. Sun, B. Huang, Y.J.E. Du, Energy Environ. Sci. 15 (2022) 3494–3502.
doi: 10.1039/d2ee01710e
L. Xue, C. Zhang, J. Wu, et al., Appl. Catal. B 304 (2022) 120951.
doi: 10.1016/j.apcatb.2021.120951
X. Yan, C. Chen, Y. Wu, et al., Chem. Sci. 12 (2021) 6638–6645.
doi: 10.1039/d1sc01117k
R. Yu, C. Qiu, Z. Lin, et al., ACS Mater. Lett. 4 (2022) 1749–1755.
doi: 10.1021/acsmaterialslett.2c00512
J. Feng, L. Wu, S. Liu, et al., J. Am. Chem. Soc. 145 (2023) 9857–9866.
doi: 10.1021/jacs.3c02428
X. Ren, Y. Gao, L. Zheng, et al., Surf. 23 (2021) 100923.
R. Schlögl, Angew. Chem. Int. Ed. 42 (2003) 2004–2008.
doi: 10.1002/anie.200301553
H.P. Jia, E.A. Quadrelli, Chem. Soc. Rev. 43 (2014) 547–564.
doi: 10.1039/C3CS60206K
C.J. Van der Ham, M.T. Koper, D.G. Hetterscheid, Chem. Soc. Rev. 43 (2014) 5183–5191.
doi: 10.1039/C4CS00085D
X. Cui, C. Tang, Q. Zhang, Adv. Energy Mater., Chem. Soc. Rev. 8 (2018) 1800369.
doi: 10.1002/aenm.201800369
X. Chen, N. Li, Z. Kong, W.J. Ong, X. Zhao, Mater. Horiz. 5 (2018) 9–27.
doi: 10.1039/C7MH00557A
T. Xu, J. Liang, S. Li, et al., A.M.J.S.S. Asiri, Small Sci. 1 (2021) 2000069.
C. Lv, C. Yan, G. Chen, et al., Angew. Chem. Int. Ed. 130 (2018) 6181–6184.
doi: 10.1002/ange.201801538
B. Xu, Z. Liu, W. Qiu, et al., Electrochim. Acta, 298 (2019) 106–111.
doi: 10.1016/j.electacta.2018.12.084
X. Li, L. Li, X. Ren, et al., Ind. Eng. Chem. Res. 57 (2018) 16622–16627.
doi: 10.1021/acs.iecr.8b04045
B. Xu, L. Xia, F. Zhou, et al., ACS Sustain. Chem. Eng. 7 (2019) 2889–2893.
doi: 10.1021/acssuschemeng.8b05007
G. Liu, Z. Cui, M. Han, et al., Chem. Eur. J. 25 (2019) 5904–5911.
doi: 10.1002/chem.201806377
G.S. Handelman, H.K. Kok, R.V. Chandra, et al., J. Intern. Med. 284 (2018) 603–619.
doi: 10.1111/joim.12822
T.U. Rehman, M.S. Mahmud, Y.K. Chang, J. Jin, J. Shin, Comput. Electron. Agric. 156 (2019) 585–605.
doi: 10.1016/j.compag.2018.12.006
T. Jiang, J.L. Gradus, A.J. Rosellini, Behav. Ther. 51 (2020) 675–687.
doi: 10.1016/j.beth.2020.05.002
A. Boehnlein, M. Diefenthaler, N. Sato, et al., Rev. Mod. Phys. 94 (2022) 031003.
doi: 10.1103/RevModPhys.94.031003
J.G. Greener, S.M. Kandathil, L. Moffat, D.T. Jones, Nat. Rev. Mol. Cell Biol, 23 (2022) 40–55.
doi: 10.1038/s41580-021-00407-0
C. Zhou, C. Chen, P. Hu, H. Wang, J. Am. Chem. Soc. 145 (2023) 21897–21903.
doi: 10.1021/jacs.3c06166
M.H. Du, Y. Dai, L.P. Jiang, et al., J. Am. Chem. Soc. 145 (2023) 23188–23195.
doi: 10.1021/jacs.3c07635
A. Mikolajczyk, E. Wyrzykowska, P. Mazierski, A. Zaleska-Medynska, T. Puzyn, J. Nadolna, Appl. Catal. B 346 (2024) 123744.
doi: 10.1016/j.apcatb.2024.123744
M. Sun, T. Wu, A.W. Dougherty, et al., Adv. Energy Mater. 11 (2021) 2003796.
doi: 10.1002/aenm.202003796
Qingbai Tian , BingLiang Yu , Zhihao Li , Wei Hong , Qian Li , Xing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Qingyun Hu , Wei Wang , Junyuan Lu , He Zhu , Qi Liu , Yang Ren , Hong Wang , Jian Hui . High-throughput screening of high energy density LiMn1-xFexPO4 via active learning. Chinese Chemical Letters, 2025, 36(2): 110344-. doi: 10.1016/j.cclet.2024.110344
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Zonglin Li , Shihua Zou , Zining Wang , Georgeta Postole , Liang Hu , Hongying Zhao . Machine learning in electrochemical oxidation process: A mini-review. Chinese Chemical Letters, 2025, 36(8): 110526-. doi: 10.1016/j.cclet.2024.110526
Yunzhe Zheng , Si Sun , Jiali Liu , Qingyu Zhao , Heng Zhang , Jing Zhang , Peng Zhou , Zhaokun Xiong , Chuan-Shu He , Bo Lai . Application of machine learning for material prediction and design in the environmental remediation. Chinese Chemical Letters, 2025, 36(9): 110722-. doi: 10.1016/j.cclet.2024.110722
Zixing Xu , Ruiying Chen , Chuanming Hao , Qionghong Xie , Chunhui Deng , Nianrong Sun . Peptidome data-driven comprehensive individualized monitoring of membranous nephropathy with machine learning. Chinese Chemical Letters, 2024, 35(5): 108975-. doi: 10.1016/j.cclet.2023.108975
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Siyuan You , Rui Li , Haoyun Lu , Lifei Hou , Xing Xu , Yanan Shang . Modulation of the structures and properties of iron-carbon composites by different small molecular carbon sources for Fenton-like reactions. Chinese Chemical Letters, 2025, 36(9): 110955-. doi: 10.1016/j.cclet.2025.110955
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Xiaoxiao Wang , Bolun Wang , Fenfen Ji , Jie Yan , Jiacheng Fang , Doudou Zhang , Ji Xu , Jing Ji , Xinran Hao , Hemi Luan , Yanjun Hong , Shulan Qiu , Min Li , Zhu Yang , Wenlan Liu , Xiaodong Cai , Zongwei Cai . Discovery of plasma biomarkers for Parkinson’s disease diagnoses based on metabolomics and lipidomics. Chinese Chemical Letters, 2024, 35(11): 109653-. doi: 10.1016/j.cclet.2024.109653
Xinyue Han , Yunhan Yang , Jiayin Lu , Yuxiang Lin , Dongxue Zhang , Ling Lin , Liang Qiao . Efficient serum lipids profiling by TiO2-dopamin-assisted MALDI-TOF MS for breast cancer detection. Chinese Chemical Letters, 2025, 36(5): 110183-. doi: 10.1016/j.cclet.2024.110183