Citation: Jingwen Wang, Peizhang Zhao, Mengmeng Li, Jun Li, Yunfeng Lin. Remedying infectious bone defects via 3D printing technology[J]. Chinese Chemical Letters, ;2025, 36(9): 110686. doi: 10.1016/j.cclet.2024.110686 shu

Remedying infectious bone defects via 3D printing technology

    * Corresponding authors.
    E-mail addresses: mrorthopedics@sina.com (J. Li), yunfenglin@scu.edu.cn (Y. Lin).
  • Received Date: 6 August 2024
    Revised Date: 20 November 2024
    Accepted Date: 26 November 2024
    Available Online: 28 November 2024

Figures(4)

  • The technology of three dimensional (3D) printing, also known as additive manufacturing, is a cutting-edge type of fabrication method that utilizes a computer-aided design platform and employs layer-by-layer stacking to construct objects with exceptional flexibility. Due to its capacity to produce a substantial quantity of products within a short period of time, 3D printing has emerged as one of the most significant manufacturing technology. Over the past two decades, remarkable advancements have been made in the application of 3D printing technology in the realm of bone tissue engineering. This review presents an innovative and systematic discussion on the potential application of 3D printing technology in bone tissue engineering, particularly in the treatment of infected bone defects. It comprehensively evaluates the materials utilized in 3D printing, highlights the interplay between cells and bone regeneration, and addresses and resolves challenges associated with current 3D printing technology. These challenges include material selection, fabrication of intricate 3D structures, integration of different cell types, streamlining design processes and material selection procedures, enhancing the clinical translational potential of 3D printing technology, and ultimately exploring future applications of four dimensional (4D) printing technology. The 3D printing technology has demonstrated significant potential in the synthesis of bone substitutes, offering consistent mechanical properties and ease of use. It has found extensive applications in personalized implant customization, prosthetic limb manufacturing, surgical tool production, tissue engineering, biological modeling, and cell diagnostics. Simultaneously, 3D bioprinting provides an effective solution to address the issue of organ donor shortage. However, challenges still exist in material selection, management of structural complexity, integration of different cell types, and construction of functionally mature tissues. With advancements in multi-material printing techniques as well as bioprinting and 4D printing technologies emerging on the horizon; 3D printing holds immense prospects for revolutionizing the means by which infectious bone defects are repaired.
  • 加载中
    1. [1]

      E.A. Masters, B.F. Ricciardi, K.L.M. Bentley, et al., Nat. Rev. Microbiol. 20 (2022) 385–400.  doi: 10.1038/s41579-022-00686-0

    2. [2]

      A.L. Foster, J. Warren, K. Vallmuur, et al., Bone Joint J. 106-b (2024) 77–85.  doi: 10.1302/0301-620x.106b1.bjj-2023-0279.r2

    3. [3]

      Q. Wu, J. Shi, J. Huang, et al., Infect. Drug Resist. 16 (2023) 6395–6404.  doi: 10.2147/idr.s427836

    4. [4]

      D. Fan, Y. Liu, Y. Wang, et al., Front. Pharmacol. 13 (2022) 1044726.  doi: 10.3389/fphar.2022.1044726

    5. [5]

      S. Hong, W. Jiang, Q. Ding, et al., Int. J. Nanomedicine 18 (2023) 3761–3780.  doi: 10.2147/ijn.s403882

    6. [6]

      S. Tian, L. Su, Y. Liu, et al., Sci. Adv. 6 (2020) eabb1112.  doi: 10.1126/sciadv.abb1112

    7. [7]

      H.P. Bei, P.M. Hung, H.L. Yeung, et al., Small 17 (2021) e2101741.  doi: 10.1002/smll.202101741

    8. [8]

      M. Zhang, R. Lin, X. Wang, et al., Sci. Adv. 6 (2020) eaaz6725.  doi: 10.1126/sciadv.aaz6725

    9. [9]

      W. Sun, Z. Liu, J. Xu, et al., Chin. Chem. Lett. 34 (2023) 107819.  doi: 10.1016/j.cclet.2022.107819

    10. [10]

      C. Zhang, G. Wang, H. Lin, et al., Cell Prolif. 56 (2023) e13417.  doi: 10.1111/cpr.13417

    11. [11]

      T. Potyondy, J.A. Uquillas, P.J. Tebon, et al., Biofabrication 13 (2021) 022001.  doi: 10.1088/1758-5090/abc8de

    12. [12]

      E. Ning, G. Turnbull, J. Clarke, et al., Biofabrication 11 (2019) 045018.  doi: 10.1088/1758-5090/ab37a0

    13. [13]

      W. Dai, M. Sun, X. Leng, et al., Front. Bioeng. Biotechnol. 8 (2020) 604814.  doi: 10.3389/fbioe.2020.604814

    14. [14]

      L. Ouyang, J.P.K. Armstrong, Y. Lin, et al., Sci. Adv. 6 (2020) eabc5529.  doi: 10.1126/sciadv.abc5529

    15. [15]

      J.M. Bliley, D.J. Shiwarski, A.W. Feinberg, Sci. Transl. Med. 14 (2022) eabo7047.  doi: 10.1126/scitranslmed.abo7047

    16. [16]

      M.E. Kupfer, W.H. Lin, V. Ravikumar, et al., Circ. Res. 127 (2020) 207–224.  doi: 10.1161/circresaha.119.316155

    17. [17]

      S.H. Kim, H. Hong, O. Ajiteru, et al., Nat. Protoc. 16 (2021) 5484–5532.  doi: 10.1038/s41596-021-00622-1

    18. [18]

      X. Hu, W. Zhao, Z. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107451.  doi: 10.1016/j.cclet.2022.04.049

    19. [19]

      P. Kumar, S. Huang, D.H. Cook, et al., Nat. Commun. 15 (2024) 841.  doi: 10.1038/s41467-024-45178-2

    20. [20]

      D. Liu, Q. Yu, S. Kabra, et al., Science 378 (2022) 978–983.  doi: 10.1126/science.abp8070

    21. [21]

      Z. Wang, Y. Wang, J. Yan, et al., Adv. Drug Deliv. Rev. 174 (2021) 504–534.  doi: 10.1016/j.addr.2021.05.007

    22. [22]

      C.J. Todaro, M.A. Easton, D. Qiu, et al., Nat. Commun. 11 (2020) 142.  doi: 10.1038/s41467-019-13874-z

    23. [23]

      S. Wang, X. Zhao, Y. Hsu, et al., Acta Biomater. 169 (2023) 19–44.  doi: 10.1117/12.2673256

    24. [24]

      Y. Wei, Z. Liu, X. Zhu, et al., Biomaterials 257 (2020) 120237.  doi: 10.1016/j.biomaterials.2020.120237

    25. [25]

      X. Pan, M. Ou, Y. Lu, et al., Biomater. Adv. 152 (2023) 213503.  doi: 10.1016/j.bioadv.2023.213503

    26. [26]

      J.W. Park, T. Hanawa, J.H. Chung, Int. J. Nanomedicine 14 (2019) 5697–5711.  doi: 10.2147/ijn.s214363

    27. [27]

      M. Yao, S. Cheng, G. Zhong, et al., Bioact. Mater. 6 (2021) 2729–2741.

    28. [28]

      X. Bai, W. Liu, L. Xu, et al., J. Mater. Chem. B 9 (2021) 2885–2898.  doi: 10.1039/d0tb02884c

    29. [29]

      N.H. Lee, M.S. Kang, T.H. Kim, et al., Biomaterials 276 (2021) 121025.  doi: 10.1016/j.biomaterials.2021.121025

    30. [30]

      R. Qiao, S.Y. Tang, Science 378 (2022) 594–595.  doi: 10.1126/science.ade1813

    31. [31]

      L. Zhang, X. Huang, T. Cole, et al., Nat. Commun. 14 (2023) 7815.  doi: 10.1038/s41467-023-43667-4

    32. [32]

      C.P. Ambulo, M.J. Ford, K. Searles, et al., ACS Appl. Mater. Interfaces 13 (2021) 12805–12813.  doi: 10.1021/acsami.0c19051

    33. [33]

      H. Kim, S.K. Ahn, D.M. Mackie, et al., Mater. Today 41 (2020) 243–269.  doi: 10.1016/j.mattod.2020.06.005

    34. [34]

      L. Chen, Z. Yan, T. Qiu, et al., ACS Appl. Bio Mater. 6 (2023) 4703–4713.  doi: 10.1021/acsabm.3c00488

    35. [35]

      B. Jia, H. Yang, Z. Zhang, et al., Bioact. Mater. 6 (2021) 1588–1604.

    36. [36]

      D. Jain, S. Pareek, A. Agarwala, et al., J. Mater. Res. Technol. 10 (2021) 738–751.  doi: 10.1016/j.jmrt.2020.12.050

    37. [37]

      G. Parande, V. Manakari, S.D. Sharma Kopparthy, et al., Compos. B: Eng. 182 (2020) 107650.  doi: 10.1016/j.compositesb.2019.107650

    38. [38]

      H. Yang, B. Jia, Z. Zhang, et al., Nat. Commun. 11 (2020) 401.  doi: 10.1038/s41467-019-14153-7

    39. [39]

      J. Wang, H. Xia, X. Fan, et al., Mol. Biotechnol. 64 (2022) 928–935.  doi: 10.1007/s12033-022-00474-4

    40. [40]

      H. Wu, X. Xie, J. Wang, et al., J. Mater. Res. Technol. 13 (2021) 1779–1789.  doi: 10.1016/j.jmrt.2021.05.096

    41. [41]

      H. Yuk, B. Lu, S. Lin, et al., Nat. Commun. 11 (2020) 1604.  doi: 10.1038/s41467-020-15316-7

    42. [42]

      J. Li, C. Parra-Cantu, Z. Wang, et al., Trends Cancer 6 (2020) 745–756.  doi: 10.1016/j.trecan.2020.06.002

    43. [43]

      J. Bauer, C. Crook, T. Baldacchini, Science 380 (2023) 960–966.  doi: 10.1126/science.abq3037

    44. [44]

      M. Mader, O. Schlatter, B. Heck, et al., Science 372 (2021) 182–186.  doi: 10.1126/science.abf1537

    45. [45]

      T. Ayode Otitoju, P. Ugochukwu Okoye, G. Chen, et al., J. Ind. Eng. Chem. 85 (2020) 34–65.  doi: 10.1016/j.jiec.2020.02.002

    46. [46]

      W. Zhai, L. Bai, R. Zhou, et al., Adv. Sci. 8 (2021) e2003739.  doi: 10.1002/advs.202003739

    47. [47]

      Y. Zhao, H. Mei, P. Chang, et al., Compos. B: Eng. 221 (2021) 109013.  doi: 10.1016/j.compositesb.2021.109013

    48. [48]

      A. Marques, G. Miranda, F. Silva, et al., J. Biomed. Mater. Res. B: Appl. Biomater. 109 (2021) 377–393.  doi: 10.1002/jbm.b.34706

    49. [49]

      S. Behseresht, A. Love, O.A. Valdez Pastrana, et al., Materials 17 (2024) 109414.

    50. [50]

      Y. Qi, H. Lv, Q. Huang, et al., Eur. Polym. J. 213 (2024) 113133.  doi: 10.1016/j.eurpolymj.2024.113133

    51. [51]

      Q.Y. Yao, M.L. Fu, Q. Zhao, et al., World J. Clin. Cases 11 (2023) 5047–5055.  doi: 10.12998/wjcc.v11.i21.5047

    52. [52]

      H. Budharaju, S. Suresh, M.P. Sekar, et al., Mater. Des. 231 (2023) 112064.  doi: 10.1016/j.matdes.2023.112064

    53. [53]

      H.Kolahi Azar, M. Hajian Monfared, A.A. Seraji, et al., Int. J. Biol. Macromol. 258 (2024) 128482.  doi: 10.1016/j.ijbiomac.2023.128482

    54. [54]

      A. Ameri, H.M. Ahmed, R.D.C. Pecho, et al., Cancer Cell Int. 23 (2023) 261.

    55. [55]

      S. Mirabdali, K. Ghafouri, Y. Farahmand, et al., Pathol. Res. Pract. 253 (2024) 154899.  doi: 10.1016/j.prp.2023.154899

    56. [56]

      Z. Li, X. Zhang, J. Ouyang, et al., Bioact. Mater. 6 (2021) 4053–4064.

    57. [57]

      G. Zeng, Y. Chen, Acta Biomater. 118 (2020) 1–17.  doi: 10.1155/2020/8843524

    58. [58]

      X. Zhang, I.S. Donskyi, W. Tang, et al., Angew. Chem. Int. Ed. 62 (2023) e202213336.

    59. [59]

      C. He, F. Ruan, S. Jiang, et al., Small 16 (2020) e2001371.

    60. [60]

      P. Subramanian, B. Dutta, A. Arya, et al., J. Pharm. Bioallied Sci. 16 (2024) S17–S19.  doi: 10.4103/jpbs.jpbs_550_23

    61. [61]

      H. Wei, J. Cui, K. Lin, et al., Bone Res. 10 (2022) 17.  doi: 10.54097/fbem.v6i3.3111

    62. [62]

      L. Li, Z. Zeng, Z. Chen, et al., ACS Nano 14 (2020) 15403–15416.  doi: 10.1021/acsnano.0c06000

    63. [63]

      D. Li, K. Chen, H. Tang, et al., Adv. Mater. 34 (2022) e2108430.

    64. [64]

      N. Li, L. Liu, C. Wei, et al., ACS Appl. Mater. Interfaces 14 (2022) 53523–53534.  doi: 10.1021/acsami.2c16774

    65. [65]

      W. Chen, H. Zhang, Q. Zhou, et al., Research 6 (2023) 0089.

    66. [66]

      W. Wang, J. Li, Z. Zhang, et al., Cell Prolif. 54 (2021) e12951.

    67. [67]

      X. Yuan, W. Zhu, Z. Yang, et al., Adv. Mater. 36 (2024) e2403641.

    68. [68]

      Z. Li, S. Li, J. Yang, et al., Carbohydr. Polym. 290 (2022) 119469.

    69. [69]

      A. Abaci, M. Guvendiren, Biofabrication 16 (2024) 035027.  doi: 10.1088/1758-5090/ad52f1

    70. [70]

      W. Tessanan, P. Daniel, P. Phinyocheep, ACS Omega 6 (2021) 14838–14847.  doi: 10.1021/acsomega.1c00418

    71. [71]

      Y. Song, J. Zhang, H. Xu, et al., J. Orthop. Translat. 24 (2020) 121–130.

    72. [72]

      S.M. Santillán-Guaján, M.H. Shahi, J.S. Castresana, Cells 13 (2024) 617.  doi: 10.3390/cells13070617

    73. [73]

      A. Bajetto, S. Thellung, I. Dellacasagrande, et al., Stem Cells Transl. Med. 9 (2020) 1310–1330.  doi: 10.1002/sctm.20-0161

    74. [74]

      V. Fitzpatrick, Z. Martín-Moldes, A. Deck, et al., Biomaterials 276 (2021) 120995.

    75. [75]

      W. Yan, M. Maimaitimin, Y. Wu, et al., Sci. Adv. 9 (2023) eadg8138.

    76. [76]

      J. Deng, X. Wang, W. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2211664.

    77. [77]

      Q. Lin, X. Lin, Biotechnol. J. 18 (2023) e2300070.

    78. [78]

      H. Hong, Y.B. Seo, D.Y. Kim, et al., Biomaterials 232 (2020) 119679.

    79. [79]

      S. Zhao, J. Chen, L. Wu, et al., Int. J. Mol. Sci. 24 (2023) e2211510120.

    80. [80]

      S.R. Lamandé, E.S. Ng, T.L. Cameron, et al., Proc. Natl. Acad. Sci. U. S. A. 120 (2023) e2211510120.

    81. [81]

      H. Okano, S. Morimoto, Cell Stem Cell 29 (2022) 189–208.

    82. [82]

      F. Varzideh, J. Gambardella, U. Kansakar, et al., Int. J. Mol. Sci. 24 (2023) 793–800.

    83. [83]

      S. Abdelrahman, W.F. Alsanie, Z.N. Khan, et al., Biofabrication 14 (2022) 6963.

    84. [84]

      L. Edgar, T. Pu, B. Porter, et al., Br. J. Surg. 107 (2020) 793–800.  doi: 10.1002/bjs.11686

    85. [85]

      Z. Li, D. He, B. Guo, et al., Nat. Commun. 14 (2023) 6963.

    86. [86]

      K. Yuan, Y. Yang, Y. Lin, et al., Adv. Sci. (2024), doi: 10.1002/advs.202404453.  doi: 10.1002/advs.202404453

    87. [87]

      H. Wang, X. Liu, Q. Gu, et al., Cell Prolif. 56 (2023) e13453.

    88. [88]

      M.A. Ortega, D. De Leon-Oliva, D. Liviu Boaru, et al., Histol. Histopathol. (2024), doi: 10.14670/HH-18-763.  doi: 10.14670/HH-18-763

    89. [89]

      W. Lan, X. Huang, D. Huang, X. Wei, W. Chen, J. Mater. Sci. 57 (2022) 12685–12709.  doi: 10.1007/s10853-022-07361-y

    90. [90]

      V. Chopra, V. Fuentes-Velasco, S.R. Nacif-Lopez, et al., Ceram. Int. (2024), doi: 10.1016/j.ceramint.2024.07.266.  doi: 10.1016/j.ceramint.2024.07.266

    91. [91]

      I. Matai, G. Kaur, A. Seyedsalehi, et al., Biomaterials 226 (2020) 119536.

    92. [92]

      B. Li, M. Zhang, Q. Lu, et al., Biomed. Res. Int. 2022 (2022) 8759060.

    93. [93]

      Z. Jin, Y. Li, K. Yu, et al., Adv. Sci. 8 (2021) e2101394.

    94. [94]

      K.Prem Ananth, N.D. Jayram, Ann. 3D Print. Med. 13 (2024) 100141.

    95. [95]

      L. Zhao, X. Wang, H. Xiong, et al., J. Eur. Ceram. Soc. 41 (2021) 5066–5074.

    96. [96]

      Y. Wang, T. Wu, G. Huang, Mater. Today Commun. 40 (2024) 110001.

    97. [97]

      Z. Wu, C. Shi, Y. Li, et al., Chem. Eng. J. 464 (2023) 142778.

    98. [98]

      Y. Song, Y. Ghafari, A. Asefnejad, et al., Opt. Laser Technol. 171 (2024) 142778.

    99. [99]

      Y. Bozkurt, E. Karayel, J. Mater. Res. Technol. 14 (2021) 1430–1450.

    100. [100]

      K. Wang, J. Yin, X. Chen, et al., J. Alloys Compd. 975 (2024) 172821.

    101. [101]

      D. Bhardwaj, R. Singhmar, M. Garg, et al., Eur. Polym. J. 205 (2024) 112736.

    102. [102]

      Z. Li, J. Li, H. Luo, et al., J. Eur. Ceram. Soc. 42 (2022) 3841–3847.  doi: 10.3390/cells11233841

    103. [103]

      H. Chen, L. Guo, W. Zhu, et al., Polymers 14 (2022) 4635.  doi: 10.3390/polym14214635

    104. [104]

      O. Santoliquido, F. Camerota, A. Rosa, et al., Open Ceramics 5 (2021) 100089.

    105. [105]

      M. Pagac, J. Hajnys, Q.-P. Ma, et al., Polymers 13 (2021) 598.  doi: 10.3390/polym13040598

    106. [106]

      J. Li, Y.X. Lai, M.X. Li, et al., Chem. Eng. J. 435 (2022) 134855.

    107. [107]

      H. Liang, H. Zhang, B. Chen, et al., Sci. Rep. 13 (2023) 22667.

    108. [108]

      A. Haleem, M. Javaid, R.H. Khan, et al., J. Clin. Orthop. Trauma 11 (2020) S118–S124.

    109. [109]

      U.L. Lee, J.Y. Lim, S.N. Park, et al., Materials 13 (2020) 4515.  doi: 10.3390/ma13204515

    110. [110]

      M. Shahrezaie, A. Zamanian, M. Sahranavard, et al., Bioprinting 37 (2024) e00327.

    111. [111]

      C. Faldini, A. Mazzotti, C. Belvedere, et al., J. Orthop. Traumatol. 21 (2020) 16.

    112. [112]

      D.W. Wu, J.W. Tan, L.Y. Yao, et al., Compos. A: Appl. Sci. Manuf. 147 (2021) 106468.

    113. [113]

      L. Li, J. Shi, K. Ma, et al., J. Adv. Res. 30 (2021) 75–84.

    114. [114]

      C. Xu, Z. Liu, X. Chen, et al., Chin. Chem. Lett. 35 (2024) 109197.

    115. [115]

      I. Seoane-Viaño, S.J. Trenfield, A.W. Basit, et al., Adv. Drug Deliv. Rev. 174 (2021) 553–575.

    116. [116]

      H. Xie, K.K. Yang, Y.Z. Wang, Prog. Polym. Sci. 95 (2019) 32–64.

    117. [117]

      X. Chen, S. Han, W. Wu, et al., Small 18 (2022) e2106824.

    118. [118]

      P. Rastogi, B. Kandasubramanian, Chem. Eng. J. 366 (2019) 264–304.

  • 加载中
    1. [1]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    2. [2]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    3. [3]

      Ruijianghan ShiYujie ZhuWeitong LuYuhan ShaoYang ChenMi ZhouYunfeng LinSirong Shi . Tetrahedral framework nucleic acids enhance osteogenic differentiation and prevent apoptosis for dental follicle stem cell therapy in diabetic bone repair. Chinese Chemical Letters, 2025, 36(5): 110241-. doi: 10.1016/j.cclet.2024.110241

    4. [4]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    5. [5]

      Tianxu ZhangDexuan XiaoMi ZhouYunfeng LinTao ZhangXiaoxiao Cai . Protective effect of osteogenic growth peptide functionalized tetrahedral DNA nanostructure on bone marrow and bone formation ability in chemotherapy-induced myelosuppressive mice. Chinese Chemical Letters, 2025, 36(8): 110594-. doi: 10.1016/j.cclet.2024.110594

    6. [6]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    7. [7]

      Jielin WangHan YeBozhuang ZhouZhen PanYucai LiZhenyuan WeiBin ChaiYizhou GaoXiaojian YeJiangming Yu . Biomimetic nanofibrillar/hyaluronic acid hydrogels remodel the neuromodulatory microenvironment for enhanced bone regeneration. Chinese Chemical Letters, 2025, 36(5): 110133-. doi: 10.1016/j.cclet.2024.110133

    8. [8]

      Zeyang YaoXinru YouXudong WangYunze KangLiying WangZiji Zhang . Stem cell-based hydrogel for the repair and regeneration of cartilage. Chinese Chemical Letters, 2025, 36(8): 110607-. doi: 10.1016/j.cclet.2024.110607

    9. [9]

      Chong-Yang ShiJian-Xing GongZhen LiChao ShuLong-Wu YeQing SunBo ZhouXin-Qi Zhu . Gold-catalyzed intermolecular amination of allyl azides with ynamides: Efficient construction of 3-azabicyclo[3.1.0] scaffold. Chinese Chemical Letters, 2025, 36(2): 109895-. doi: 10.1016/j.cclet.2024.109895

    10. [10]

      Yuexi Guo Zhaoyang Li Jingwei Dai . Charlie and the 3D Printing Chocolate Factory. University Chemistry, 2024, 39(9): 235-242. doi: 10.3866/PKU.DXHX202309067

    11. [11]

      Qi ZhangBin HanYucheng JinMingrun LiEnhui ZhangJianzhuang Jiang . 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2025, 36(9): 110330-. doi: 10.1016/j.cclet.2024.110330

    12. [12]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    13. [13]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    14. [14]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    15. [15]

      Chengmin HuPingxuan LiuZiyang SongYaokang LvHui DuanLi XieLing MiaoMingxian LiuLihua Gan . Tailor-made overstable 3D carbon superstructures towards efficient zinc-ion storage. Chinese Chemical Letters, 2025, 36(4): 110381-. doi: 10.1016/j.cclet.2024.110381

    16. [16]

      Run ChaiQiujie WuYongchao LiuXiaohui SongXuyong FengYi SunHongfa Xiang . A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries. Chinese Chemical Letters, 2025, 36(6): 110007-. doi: 10.1016/j.cclet.2024.110007

    17. [17]

      Anjing LiaoWei SunYaming LiuHan YanZhi XiaJian Wu . Pyrrole and pyrrolidine analogs: The promising scaffold in discovery of pesticides. Chinese Chemical Letters, 2025, 36(3): 110094-. doi: 10.1016/j.cclet.2024.110094

    18. [18]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    19. [19]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    20. [20]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return