Review of imaging buffers used in stochastic optical reconstruction microscopy
-
* Corresponding author.
E-mail address: madonghan@dlut.edu.cn (D. Ma).
Citation:
Can Wang, Zhe Sun, Donghan Ma. Review of imaging buffers used in stochastic optical reconstruction microscopy[J]. Chinese Chemical Letters,
;2025, 36(9): 110677.
doi:
10.1016/j.cclet.2024.110677
E. Betzig, G.H. Patterson, R. Sougrat, et al., Science 313 (2006) 1642–1645.
doi: 10.1126/science.1127344
S.T. Hess, T.P.K. Girirajan, M.D. Mason, Biophys. J. 91 (2006) 4258–4272.
doi: 10.1529/biophysj.106.091116
M.J. Rust, M. Bates, X. Zhuang, Nat. Methods 3 (2006) 793–795.
doi: 10.1038/nmeth929
M. Heilemann, S. van de Linde, M. Schüttpelz, et al., Angew. Chem. Int. Ed. 47 (2008) 6172–6176.
doi: 10.1002/anie.200802376
A. Sharonov, R.M. Hochstrasser, Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 18911–18916.
doi: 10.1073/pnas.0609643104
R. Jungmann, C. Steinhauer, M. Scheible, et al., Nano Lett. 10 (2010) 4756–4761.
doi: 10.1021/nl103427w
F. Balzarotti, Y. Eilers, K.C. Gwosch, et al., Science 355 (2017) 606–612.
doi: 10.1126/science.aak9913
P. Kanchanawong, G. Shtengel, A.M. Pasapera, et al., Nature 468 (2010) 580–584.
doi: 10.1038/nature09621
K. Xu, G. Zhong, X. Zhuang, Science 339 (2013) 452–456.
doi: 10.1126/science.1232251
C. Laplante, F. Huang, I.R. Tebbs, J. Bewersdorf, T.D. Pollard, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E5876–E5885.
A.H. Tang, H. Chen, T.P. Li, et al., Nature 536 (2016) 210–214.
doi: 10.1038/nature19058
F. Huang, G. Sirinakis, E.S. Allgeyer, et al., Cell 166 (2016) 1028–1040.
doi: 10.1016/j.cell.2016.06.016
L. Möckl, W.E. Moerner, J. Am. Chem. Soc. 142 (2020) 17828–17844.
doi: 10.1021/jacs.0c08178
S. Liu, H. Huh, S.H. Lee, F. Huang, Annu. Rev. Biomed. Eng. 22 (2020) 155–184.
doi: 10.1146/annurev-bioeng-060418-052203
M. Lelek, M.T. Gyparaki, G. Beliu, et al., Nat. Rev. Methods Primers 1 (2021) 39.
doi: 10.1038/s43586-021-00038-x
S.J. Sahl, W.E. Moerner, Curr. Opin. Struct. Biol. 23 (2013) 778–787.
doi: 10.1016/j.sbi.2013.07.010
H. Liu, Z. Ye, Y. Deng, et al., Trend. Anal. Chem. 169 (2023) 117359.
doi: 10.1016/j.trac.2023.117359
H. Li, J.C. Vaughan, Chem. Rev. 118 (2018) 9412–9454.
doi: 10.1021/acs.chemrev.7b00767
P. Sengupta, S.B. van Engelenburg, J. Lippincott-Schwartz, Chem. Rev. 114 (2014) 3189–3202.
doi: 10.1021/cr400614m
J. Schnitzbauer, M.T. Strauss, T. Schlichthaerle, F. Schueder, R. Jungmann, Nat. Protoc. 12 (2017) 1198–1228.
doi: 10.1038/nprot.2017.024
R. Jungmann, M.S. Avendaño, J.B. Woehrstein, et al., Nat. Methods 11 (2014) 313–318.
doi: 10.1038/nmeth.2835
M. Dai, R. Jungmann, P. Yin, Nat. Nanotechnol. 11 (2016) 798–807.
doi: 10.1038/nnano.2016.95
N. Liu, M. Dai, S.K. Saka, P. Yin, Nat. Chem. 11 (2019) 1001–1008.
doi: 10.1038/s41557-019-0325-7
K.C. Gwosch, J.K. Pape, F. Balzarotti, et al., Nat. Methods 17 (2020) 217–224.
doi: 10.1038/s41592-019-0688-0
S. Liu, P. Hoess, J. Ries, Annu. Rev. Biophys. 51 (2022) 301–326.
doi: 10.1146/annurev-biophys-102521-112912
Z. Liu, Y. Zheng, T. Xie, et al., Chin. Chem. Lett. 32 (2021) 3862–3864.
doi: 10.1016/j.cclet.2021.04.038
C. Eggeling, J. Widengren, R. Rigler, C.A. Seidel, Anal. Chem. 70 (1998) 2651–2659.
doi: 10.1021/ac980027p
J. Kwon, M.S. Elgawish, S.H. Shim, Adv. Sci. 9 (2022) e2101817.
doi: 10.1002/advs.202101817
C.G. Hübner, A. Renn, I. Renge, U.P. Wild, J. Chem. Phys. 115 (2001) 9619–9622.
doi: 10.1063/1.1421382
H. Piwonski, R. Kolos, A. Meixner, J. Sepiol, Chem. Phys. Lett. 405 (2005) 352–356.
doi: 10.1016/j.cplett.2005.02.033
A. Renn, J. Seelig, V. Sandoghdar, Mol. Phys. 104 (2006) 409–414.
doi: 10.1080/00268970500361861
H.M. Chen, H. Wang, Y. Wei, et al., Chin. Chem. Lett. 33 (2022) 1865–1869.
doi: 10.1016/j.cclet.2021.10.025
R.E. Benesch, R. Benesch, Science 118 (1953) 447–448.
doi: 10.1126/science.118.3068.447
Y. Harada, K. Sakurada, T. Aoki, D.D. Thomas, T. Yanagida, J. Mol. Biol. 216 (1990) 49–68.
doi: 10.1016/S0022-2836(05)80060-9
S.C. Blanchard, R.L. Gonzalez, H.D. Kim, S. Chu, J.D. Puglisi, Nat. Struct. Mol. Biol. 11 (2004) 1008–1014.
doi: 10.1038/nsmb831
S.C. Blanchard, H.D. Kim, R.L. Gonzalez, J.D. Puglisi, S. Chu, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 12893–12898.
doi: 10.1073/pnas.0403884101
C. Joo, S.A. McKinney, M. Nakamura, et al., Cell 126 (2006) 515–527.
doi: 10.1016/j.cell.2006.06.042
J.B. Munro, R.B. Altman, N. O'Connor, S.C. Blanchard, Mol. Cell 25 (2007) 505–517.
doi: 10.1016/j.molcel.2007.01.022
T.H. Lee, L.J. Lapidus, W. Zhao, et al., Biophys. J. 92 (2007) 3275–3283.
doi: 10.1529/biophysj.106.094623
X. Shi, J. Lim, T. Ha, Anal. Chem. 82 (2010) 6132–6138.
doi: 10.1021/ac1008749
B. Huang, W. Wang, M. Bates, X. Zhuang, Science 319 (2008) 810–813.
doi: 10.1126/science.1153529
R.P.J. Nieuwenhuizen, K.A. Lidke, M. Bates, et al., Nat. Methods 10 (2013) 557–562.
doi: 10.1038/nmeth.2448
F. Huang, T.M.P. Hartwich, F.E. Rivera-Molina, et al., Nat. Methods 10 (2013) 653–658.
doi: 10.1038/nmeth.2488
Y. Shechtman, L.E. Weiss, A.S. Backer, M.Y. Lee, W.E. Moerner, Nat. Photonics 10 (2016) 590–594.
doi: 10.1038/nphoton.2016.137
J. Kim, M. Wojcik, Y. Wang, et al., Nat. Methods 16 (2019) 853–857.
doi: 10.1038/s41592-019-0510-z
J.V. Thevathasan, M. Kahnwald, K. Cieśliński, et al., Nat. Methods 16 (2019) 1045–1053.
doi: 10.1038/s41592-019-0574-9
Y. Zhang, L.K. Schroeder, M.D. Lessard, et al., Nat. Methods 17 (2020) 225–231.
doi: 10.1038/s41592-019-0676-4
R. Diekmann, M. Kahnwald, A. Schoenit, et al., Nat. Methods 17 (2020) 909–912.
doi: 10.1038/s41592-020-0918-5
Y. Li, W. Shi, S. Liu, et al., Nat. Commun. 13 (2022) 3133.
doi: 10.1007/s00436-022-07584-7
D.J. Nieves, J.A. Pike, F. Levet, et al., Nat. Methods 20 (2023) 259–267.
doi: 10.1038/s41592-022-01750-6
S.W. Englander, D.B. Calhoun, J.J. Englander, Anal. Biochem. 161 (1987) 300–306.
doi: 10.1016/0003-2697(87)90454-4
R. Bonnett, G. Martínez, Tetrahedron 57 (2001) 9513–9547.
doi: 10.1016/S0040-4020(01)00952-8
M.J. Davies, Photochem. Photobiol. Sci. 3 (2004) 17–25.
doi: 10.1039/b307576c
C.E. Aitken, R.A. Marshall, J.D. Puglisi, Biophys. J. 94 (2008) 1826–1835.
doi: 10.1529/biophysj.107.117689
P. Zhang, S. Liu, A. Chaurasia, et al., Nat. Methods 15 (2018) 913–916.
doi: 10.1038/s41592-018-0153-5
A. Descloux, K.S. Grußmayer, A. Radenovic, Nat. Methods 16 (2019) 918– 924.
doi: 10.1038/s41592-019-0515-7
D. Nino, D. Djayakarsana, J.N. Milstein, Small Methods 3 (2019) 1900082.
doi: 10.1002/smtd.201900082
F. Xu, D. Ma, K.P. MacPherson, et al., Nat. Methods 17 (2020) 531–540.
doi: 10.1038/s41592-020-0816-x
P. Zhang, D. Ma, X. Cheng, et al., Nat. Methods 20 (2023) 1748–1758.
doi: 10.1038/s41592-023-02029-0
M. Swoboda, J. Henig, H.M. Cheng, et al., ACS Nano 6 (2012) 6364–6369.
doi: 10.1021/nn301895c
L. Nahidiazar, A.V. Agronskaia, J. Broertjes, B. van den Broek, K. Jalink, PLoS One 11 (2016) e0158884.
doi: 10.1371/journal.pone.0158884
K.C. Ho, J.K. Leach, K. Eley, R.B. Mikkelsen, P.S. Lin, Am. J. Clin. Oncol. 26 (2003) e86–e91.
E. Nehme, D. Freedman, R. Gordon, et al., Nat. Methods 17 (2020) 734–740.
doi: 10.1038/s41592-020-0853-5
S. Liu, J. Chen, J. Hellgoth, et al., Nat. Methods 21 (2024) 1082–1093.
doi: 10.1038/s41592-024-02282-x
D. Xiao, R.K. Orange, N. Opatovski, et al., Sci. Adv. 10 (2024) eadj3656.
doi: 10.1126/sciadv.adj3656
T.M.P. Hartwich, K.K.H. Chung, L. Schroeder, et al., bioRxiv (2018), doi: 10.1101/465492.
doi: 10.1101/465492
V. Abdelsayed, H. Boukhatem, N. Olivier, ACS Photonics 9 (2022) 3926–3934.
doi: 10.1021/acsphotonics.2c01249
W. Sun, S. Guo, C. Hu, J. Fan, X. Peng, Chem. Rev. 116 (2016) 7768–7817.
doi: 10.1021/acs.chemrev.6b00001
Y. Gidi, L. Payne, V. Glembockyte, et al., J. Am. Chem. Soc. 142 (2020) 12681–12689.
doi: 10.1021/jacs.0c03786
G.E. Go, U. Jeong, H. Park, S. Go, D. Kim, Angew. Chem. Int. Ed. 63 (2024) e202405246.
doi: 10.1002/anie.202405246
M. Sauer, M. Heilemann, Chem. Rev. 117 (2017) 7478–7509.
doi: 10.1021/acs.chemrev.6b00667
B. Wang, M. Xiong, J. Susanto, et al., Angew. Chem. Int. Ed. 61 (2022) e202113612.
doi: 10.1002/anie.202113612
J. Vogelsang, R. Kasper, C. Steinhauer, et al., Angew. Chem. Int. Ed. 47 (2008) 5465–5469.
doi: 10.1002/anie.200801518
M. Bates, T.R. Blosser, X. Zhuang, Phys. Rev. Lett. 94 (2005) 108101.
doi: 10.1103/PhysRevLett.94.108101
M. Heilemann, E. Margeat, R. Kasper, M. Sauer, P. Tinnefeld, J. Am. Chem. Soc. 127 (2005) 3801–3806.
doi: 10.1021/ja044686x
G.T. Dempsey, M. Bates, W.E. Kowtoniuk, et al., J. Am. Chem. Soc. 131 (2009) 18192–18193.
doi: 10.1021/ja904588g
G.T. Dempsey, J.C. Vaughan, K.H. Chen, M. Bates, X. Zhuang, Nat. Methods 8 (2011) 1027–1036.
doi: 10.1038/nmeth.1768
M. Bates, B. Huang, G.T. Dempsey, X. Zhuang, Science 317 (2007) 1749–1753.
doi: 10.1126/science.1146598
B.J. Beliveau, A.N. Boettiger, M.S. Avendaño, et al., Nat. Commun. 6 (2015) 7147.
doi: 10.1038/ncomms8147
S. Wäldchen, J. Lehmann, T. Klein, S. van de Linde, M. Sauer, Sci. Rep. 5 (2015) 15348.
doi: 10.1038/srep15348
S.K. Chakkarapani, G. Park, S.H. Kang, Chin. Chem. Lett. 26 (2015) 1490–1495.
doi: 10.1016/j.cclet.2015.10.017
A.N. Boettiger, B. Bintu, J.R. Moffitt, et al., Nature 529 (2016) 418–422.
doi: 10.1038/nature16496
R.M.P. da Silva, D. van der Zwaag, L. Albertazzi, et al., Nat. Commun. 7 (2016) 11561.
doi: 10.1038/ncomms11561
C. Chen, S. Zong, Z. Wang, et al., ACS Appl. Mater. Interfaces 8 (2016) 25825–25833.
doi: 10.1021/acsami.6b09442
B. Roubinet, M. Weber, H. Shojaei, et al., J. Am. Chem. Soc. 139 (2017) 6611–6620.
doi: 10.1021/jacs.7b00274
W. Ouyang, A. Aristov, M. Lelek, X. Hao, C. Zimmer, Nat. Biotechnol. 36 (2018) 460–468.
doi: 10.1038/nbt.4106
K.H. Song, Y. Zhang, G. Wang, C. Sun, H.F. Zhang, Optica 6 (2019) 709–715.
doi: 10.1364/optica.6.000709
T. Nerreter, S. Letschert, R. Götz, et al., Nat. Commun. 10 (2019) 3137.
doi: 10.1038/s41467-019-10948-w
H. Zhang, C.L. Christensen, R. Dries, et al., Cancer Cell 37 (2020) 37–54.
doi: 10.1016/j.ccell.2019.11.003
L. Gu, Y. Li, S. Zhang, et al., Nat. Methods 18 (2021) 369–373.
doi: 10.1038/s41592-021-01099-2
J. Dong, Y. Lu, Y. Xu, et al., Nature 596 (2021) 244–249.
doi: 10.1038/s41586-021-03715-9
C. Cabriel, T. Monfort, C.G. Specht, I. Izeddin, Nat. Photonics 17 (2023) 1105–1113.
doi: 10.1038/s41566-023-01308-8
Y. Yang, Y. Ma, J.F. Berengut, et al., Nat. Photonics 18 (2024) 713–720.
doi: 10.1038/s41566-024-01431-0
I. Rasnik, S.A. McKinney, T. Ha, Nat. Methods 3 (2006) 891–893.
doi: 10.1038/nmeth934
J. Widengren, A. Chmyrov, C. Eggeling, P.A. Löfdahl, C.A.M. Seidel, J. Phys. Chem. A 111 (2007) 429–440.
doi: 10.1021/jp0646325
J.C. Vaughan, G.T. Dempsey, E. Sun, X. Zhuang, J. Am. Chem. Soc. 135 (2013) 1197–1200.
doi: 10.1021/ja3105279
S. Samanta, W. Gong, W. Li, et al., Coord. Chem. Rev. 380 (2019) 17–34.
N. Olivier, D. Keller, P. Gönczy, S. Manley, PLoS One 8 (2013) e69004.
doi: 10.1371/journal.pone.0069004
L. Carlini, A. Benke, L. Reymond, G. Lukinavičius, S. Manley, ChemPhysChem 15 (2014) 750–755.
doi: 10.1002/cphc.201301004
F. Kazemi, A.R. Kiasat, E. Sarvestani, Chin. Chem. Lett. 19 (2008) 1167–1170.
doi: 10.1016/j.cclet.2008.06.043
J. Hu, G. Kong, Y. Zhu, C. Che, Chin. Chem. Lett. 32 (2021) 543–547.
doi: 10.1016/j.cclet.2020.03.045
M.J. Mlodzianoski, P.J. Cheng-Hathaway, S.M. Bemiller, et al., Nat. Methods 15 (2018) 583–586.
doi: 10.1038/s41592-018-0053-8
M. Siemons, B.M.C. Cloin, D.M. Salas, et al., Biomed. Opt. Express 11 (2020) 735–751.
doi: 10.1364/boe.382023
S. Fu, W. Shi, T. Luo, et al., Nat. Methods 20 (2023) 459–468.
doi: 10.1038/s41592-023-01775-5
W. Wu, S. Luo, C. Fan, et al., Light Sci. Appl. 12 (2023) 9.
doi: 10.1117/12.2652087
M. Booth, D. Andrade, D. Burke, B. Patton, M. Zurauskas, Microscopy 64 (2015) 251–261.
doi: 10.1093/jmicro/dfv033
L. Zhou, W. Shi, S. Fu, et al., Anal. Chem. 96 (2024) 15648–15656.
doi: 10.1021/acs.analchem.4c02893
T. Staudt, M.C. Lang, R. Medda, J. Engelhardt, S.W. Hell, Microsc. Res. Tech. 70 (2007) 1–9.
doi: 10.1002/jemt.20396
H. Ma, R. Fu, J. Xu, Y. Liu, Sci. Rep. 7 (2017) 1542.
doi: 10.1038/s41598-017-01606-6
H. Ma, M. Chen, P. Nguyen, Y. Liu, Sci. Adv. 10 (2024) eadm7765.
doi: 10.1126/sciadv.adm7765
B. Huang, S.A. Jones, B. Brandenburg, X. Zhuang, Nat. Methods 5 (2008) 1047–1052.
doi: 10.1038/nmeth.1274
N. Olivier, D. Keller, V.S. Rajan, P. Gönczy, S. Manley, Biomed. Opt. Express 4 (2013) 885–899.
A. Arsić, N. Stajković, R. Spiegel, I. Nikić-Spiegel, Sci. Rep. 10 (2020) 6441.
Y. Lee, Y. Lee, M. Lee, et al., ACS Photonics 10 (2023) 2589–2597.
doi: 10.1021/acsphotonics.3c00806
Aoxuan Song , Qinglong Qiao , Ning Xu , Yiyan Ruan , Wenhao Jia , Xiang Wang , Zhaochao Xu . Super-resolution imaging of cellular pseudopodia dynamics with a target-specific blinkogenic probe. Chinese Chemical Letters, 2025, 36(8): 110643-. doi: 10.1016/j.cclet.2024.110643
Lingfeng Zheng , Chengyuan Lv , Wenlin Cai , Qingze Pan , Zuokai Wang , Wenkai Liu , Jiangli Fan , Xiaojun Peng . A single-component LED excited enone photoinitiator for colorless and transparent antibacterial film preparation. Chinese Chemical Letters, 2025, 36(4): 109922-. doi: 10.1016/j.cclet.2024.109922
Jun-Jie Fang , Yun-Peng Xie , Xing Lu . Organooxotin and cobalt/manganese heterometallic nanoclusters exhibiting single-molecule magnetism. Chinese Journal of Structural Chemistry, 2025, 44(4): 100515-100515. doi: 10.1016/j.cjsc.2025.100515
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Xinyi Luo , Ke Wang , Yingying Xue , Xiaobao Cao , Jianhua Zhou , Jiasi Wang . Digital PCR-free technologies for absolute quantitation of nucleic acids at single-molecule level. Chinese Chemical Letters, 2025, 36(2): 109924-. doi: 10.1016/j.cclet.2024.109924
Yinling HOU , Jia JI , Hong YU , Xiaoyun BIAN , Xiaofen GUAN , Jing QIU , Shuyi REN , Ming FANG . A rhombic Dy4-based complex showing remarkable single-molecule magnet behavior. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 605-612. doi: 10.11862/CJIC.20240251
Hao Gu , Rui Li , Qiuying Li , Sheng Lu , Yahui Chen , Xiaoning Yang , Huili Ma , Zhijun Xu , Xiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116
Qian-Cheng Luo , Xia-Li Ding , Wen-Jie Xu , Yuan-Qi Zhai , Yan-Zhen Zheng . Equatorial aminopyridine ligands stabilize an unusual straightly bridging mode in dimeric dysprosium(Ⅲ) single-molecule magnets. Chinese Chemical Letters, 2025, 36(9): 110304-. doi: 10.1016/j.cclet.2024.110304
Yan Wang , Si-Meng Zhai , Peng Luo , Xi-Yan Dong , Jia-Yin Wang , Zhen Han , Shuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493
Yutong Xiong , Ting Meng , Wendi Luo , Bin Tu , Shuai Wang , Qingdao Zeng . Molecular conformational effects on co-assembly systems of low-symmetric carboxylic acids investigated by scanning tunneling microscopy. Chinese Journal of Structural Chemistry, 2025, 44(2): 100511-100511. doi: 10.1016/j.cjsc.2025.100511
Junliang Zhou , Tian-Bing Ren , Lin Yuan . The strategy to improve the brightness of organic small-molecule fluorescent dyes for imaging. Chinese Chemical Letters, 2025, 36(8): 110644-. doi: 10.1016/j.cclet.2024.110644
Wanpeng Zhou , Xuwen Da , Yunli Xu , Yatong Peng , Xiulian Liu , Yao Wu , Yu Shi , Aifeng Wu , Yishan Yao , Xuesong Wang , Qianxiong Zhou . HClO-responsive dinuclear Ru(Ⅱ) complexes for selective imaging and efficient photo-inactivation of intracellular bacteria. Chinese Chemical Letters, 2025, 36(6): 110376-. doi: 10.1016/j.cclet.2024.110376
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Hang Meng , Bicheng Zhu , Ruolun Sun , Zixuan Liu , Shaowen Cao , Kan Zhang , Jiaguo Yu , Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410
Jing-Jing Zhang , Lujun Lou , Rui Lv , Jiahui Chen , Yinlong Li , Guangwei Wu , Lingchao Cai , Steven H. Liang , Zhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342
Shihong Wu , Ronghui Zhou , Hang Zhao , Peng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Wenjing Dai , Lan Luo , Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Hui Zhang , Rong Feng , Wanyi Yu , Hongbei Wei , Tianhong Wu , Peng Zhang , Wenhai Bian , Xin Li , Di Gao , Guojun Weng , Zhe Yang , Tony D. James , Xiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528