Citation: Luyun Zhang, Ding Liu, Huri Piao, Zhenhua Jia, Fen-Er Chen. A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes[J]. Chinese Chemical Letters, ;2025, 36(7): 110640. doi: 10.1016/j.cclet.2024.110640 shu

A modified Bis-OPNN phosphorus ligand for Rh-catalyzed linear-selective hydroformylation of alkenes

Figures(3)

  • The hydroformylation of olefins, known as the "oxo reaction", involves the use of syngas (CO/H2) to produce aldehyde with an additional carbon atom. However, side reactions such as the isomerization or hydrogenation of olefins often result in unexpected products and other by-products. Recent efforts in developing efficient ligands represent the most effective approach to addressing these challenges. In this study, we described a Bis-OPNN phosphorus ligand facilitated Rh-catalyzed hydroformylation with a high degree of linear selectivity across various olefins. Under mild conditions, a broad range of olefins were efficiently converted into linear aldehydes with high yields and excellent regioselectivity. The protocol also showed impressive functional group tolerance and was successfully applied to modify drugs and natural products, including the total synthesis of (±)-crispine A. Preliminary mechanistic studies revealed that this Bis-OPNN phosphorus ligand anchoring the rhodium catalyst is crucial for controlling the linear selectivity.
  • 加载中
    1. [1]

      O. Roelen, German patent DE 849548, 1938/1952; U.S. Patent 2327066.

    2. [2]

      H. Adkins, G. Krsek, J. Am. Chem. Soc. 71 (1949) 3051.  doi: 10.1021/ja01177a032

    3. [3]

      X.F. Wu, X. Fang, L. Wu, et al., Acc. Chem. Res. 47 (2014) 1041–1053.  doi: 10.1021/ar400222k

    4. [4]

      P. Kalck, M. Urrutigoïty, Chem. Rev. 118 (2018) 3833–3861.  doi: 10.1021/acs.chemrev.7b00667

    5. [5]

      F. Ungváry, Coordin. Chem. Rev. 248 (2004) 867–880.

    6. [6]

      F. Ungváry, Coordin. Chem. Rev. 249 (2005) 2946–2961.

    7. [7]

      F. Ungváry, Coordin. Chem. Rev. 251 (2007) 2087–2102.

    8. [8]

      E.V. Gusevskaya, J. Jiménez-Pinto, A. Börner, ChemCatChem 6 (2014) 382–411.  doi: 10.1002/cctc.201300474

    9. [9]

      R. Franke, D. Selent, A. Börner, Chem. Rev. 112 (2012) 5675–5732.  doi: 10.1021/cr3001803

    10. [10]

      R.M.B. Carrilho, M.J.F. Calvete, G. Mikle, L. Kollár, M.M. Pereira, Chin. J. Chem. 42 (2024) 199–221.  doi: 10.1002/cjoc.202300384

    11. [11]

      C. Botteghi, R. Ganzerla, M. Lenarda, G. Moretti, J. Mol. Catal. 40 (1987) 129–182.

    12. [12]

      Y. Ning, T. Ohwada, F.E. Chen, Green Synth. Catal. 2 (2021) 247–266.

    13. [13]

      D. Evans, A. Osborn, J. Chem. Soc. 12 (1968) 3133–3142.

    14. [14]

      C. Li, Z. Li, K. Tan, G. Liu, Eur. J. Org. Chem. 26 (2023) e202300398.

    15. [15]

      R. Bellini, S.H. Chikkali, G. Berthon-Gelloz, N. H J, Reek Angew. Chem. Int. Ed. 50 (2011) 7342–7345.  doi: 10.1002/anie.201101653

    16. [16]

      L.A. Van Der Veen, M.D.K. Boele, C. Bo, et al., J. Am. Chem. Soc. 120 (1998) 11616–11626.

    17. [17]

      M. Kranenburg, Y.E.M. Van Der Burgt, J. Fraanje, et al., Organometallics 14 (1995) 3081–3089.  doi: 10.1021/om00006a057

    18. [18]

      J.J. Carbó, C. Bo F. Maseras, P.W.N.M. Van Leeuwen, J. Am. Chem. Soc. 123 (2001) 7630–7637.

    19. [19]

      G.D. Cuny, S.L. Buchwald, J. Am. Chem. Soc. 115 (1993) 2066–2068.  doi: 10.1021/ja00058a079

    20. [20]

      T.J. Devon, G.W. Phillips, T.A. Puckette, J.L. Stavinoha, J.J. Vanderbilt, (to Eastman Kodak Company), U.S. Patent 4694109, 1987.

    21. [21]

      W.A. Herrmann, C.W. Kohlpaintner, E. Herdtweck, P. Kiprof, Inorg. Chem. 30 (1991) 4271–4275.  doi: 10.1021/ic00022a032

    22. [22]

      W.A. Herrmann, R. Schmid, C.W. Kohlpaintner, T. Priermeier, Organometallics 14 (1995) 1961–1968.  doi: 10.1021/om00004a057

    23. [23]

      C.P. Casey, G.T. Whiteker, C.F. Campana, D.R. Powell, Inorg. Chem. 29 (1990) 3376–3381.  doi: 10.1021/ic00343a023

    24. [24]

      C.P. Casey, G.T. Whiteker, M.G. Melville, et al., J. Am. Chem. Soc. 114 (1992) 5535–5543.  doi: 10.1021/ja00040a008

    25. [25]

      C.P. Casey, E.L. Paulsen, D.R. Powell, et al., J. Am. Chem. Soc. 119 (1997) 11817–11825.

    26. [26]

      P.C.J. Kamer, P.W.N.M. Van Leeuwen, J.N.H. Reek, Acc. Chem. Res. 34 (2001) 895–904.

    27. [27]

      A. Van Rooy, P.C.J. Kamer, A.L. Spek, et al., Organometallics 15 (1996) 835–847.

    28. [28]

      D. Sémeril, C. Jeunesse, D. Matt, L. Toupet, Angew. Chem. Int. Ed. 45 (2006) 5810–5814.  doi: 10.1002/anie.200601978

    29. [29]

      S. Yu, Y. Chie, X. Zhang, et al., Org. Lett. 11 (2009) 241–244.  doi: 10.1021/ol802479y

    30. [30]

      C. Cai, S. Yu, B. Cao, X. Zhang, Chem. Eur. J. 18 (2012) 9992–9998.  doi: 10.1002/chem.201201396

    31. [31]

      R.T. Zhang, X. Yana, X.M. Zhang, Green Synth. Catal. 3 (2022) 40–45.

    32. [32]

      R.F. Heck, D.S. Breslow, J. Am. Chem. Soc. 83 (1961) 4023–4027.  doi: 10.1021/ja01480a017

    33. [33]

      D. Evans, G. Yagupsky, G. Wilkinson, J. Chem. Soc. A (1968) 2660–2665.

    34. [34]

      B. Breit, W. Seiche, Synthesis 1 (2001) 1–36.

    35. [35]

      P. Gao, G. Liang, F.E. Chen, et al., Nat. Commun. 12 (2021) 4698.

    36. [36]

      T. Ru, G. Liang, L. Zhang, Y. Ning, F.E. Chen, ChemCatChem 13 (2021) 5073–5077.  doi: 10.1002/cctc.202101352

    37. [37]

      P. Gao, M. Ke, T. Ru, G. Liang, F.E. Chen, Chin. Chem. Lett. 33 (2022) 830–834.

    38. [38]

      L. Zhang, Y. Ning, B. Ye, T. Ru, F.E. Chen, Green Chem. 24 (2022) 4420–4424.  doi: 10.1039/d2gc00802e

    39. [39]

      T. Ru, Y. Zhang, F.E. Chen, et al., Molecules 29 (2024) 2039.  doi: 10.3390/molecules29092039

    40. [40]

      S. Liu, Y. Lu, J. Chen, et al., Green Synth. Catal. 4 (2023) 71–75.

  • 加载中
    1. [1]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    2. [2]

      Er-Meng WangZiyi WangXu BanXiaowei ZhaoYanli YinZhiyong Jiang . Chemoselective photocatalytic sulfenylamination of alkenes with sulfenamides via energy transfer. Chinese Chemical Letters, 2024, 35(12): 109843-. doi: 10.1016/j.cclet.2024.109843

    3. [3]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    4. [4]

      Yaqi DengJian XueXiang WuShunying Liu . Highly regioselective electrochemical oxidative 2,1-azolization of alkenes with azoles and nucleophiles. Chinese Chemical Letters, 2025, 36(9): 110822-. doi: 10.1016/j.cclet.2025.110822

    5. [5]

      Hongping ZhaoWeiming Yuan . Merging catalytic electron donor-acceptor complex and copper catalysis: Enantioselective radical carbocyanation of alkenes. Chinese Chemical Letters, 2025, 36(10): 110894-. doi: 10.1016/j.cclet.2025.110894

    6. [6]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    7. [7]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    8. [8]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    9. [9]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    10. [10]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    11. [11]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    12. [12]

      Chonglong HeYulong WangQuan-Xin LiZichen YanKeyuan ZhangShao-Fei NiXin-Hua DuanLe Liu . Alkylarylation of alkenes with arylsulfonylacetate as bifunctional reagent via photoredox radical addition/Smiles rearrangement cascade. Chinese Chemical Letters, 2025, 36(5): 110253-. doi: 10.1016/j.cclet.2024.110253

    13. [13]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    14. [14]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    15. [15]

      Tingting ZhangJing Zhang . Photocatalyzed hydrogen transfer enabled three-component radical cascade reactions: Direct access to thioesters from primary alcohols, elemental sulfur and alkenes. Chinese Chemical Letters, 2026, 37(1): 111131-. doi: 10.1016/j.cclet.2025.111131

    16. [16]

      Wei-Cheng ZhaoYan HeChen-Hui JiangPeng LiuQian GaoDuo-Duo HuXi-Sheng Wang . Asymmetric construction of non-activated C-SCF3 stereocenter via copper-catalyzed hydroallylation of SCF3-alkenes. Chinese Chemical Letters, 2026, 37(2): 111487-. doi: 10.1016/j.cclet.2025.111487

    17. [17]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    18. [18]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

Metrics
  • PDF Downloads(1)
  • Abstract views(957)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return