Forging of silaoxycarbocyclics by interrupted Catellani reaction
-
* Corresponding authors.
E-mail addresses: zwgao@snnu.edu.cn (Z.-W. Gao), hanwy@126.com (W.-Y. Han).
Citation:
Yu-Chen Fang, Jia-He Chen, Mi-Zhuan Li, Hui-Min Li, Mei Bai, Yong-Zheng Chen, Zi-Wei Gao, Wen-Yong Han. Forging of silaoxycarbocyclics by interrupted Catellani reaction[J]. Chinese Chemical Letters,
;2025, 36(7): 110474.
doi:
10.1016/j.cclet.2024.110474
W. Bains, R. Tacke, Curr. Opin. Drug Discov. Devel. 6 (2003) 526–543.
P. Englebienne, A.V. Hoonacker, C.V. Herst, Design. Drug Des. Rev.−Online 2 (2005) 467–483.
doi: 10.2174/1567269054867031
A.K. Franz, S.O. Wilson, J. Med. Chem. 56 (2013) 388–405.
doi: 10.1021/jm3010114
R. Ramesh, D.S. Reddy, J. Med. Chem. 61 (2018) 3779–3798.
doi: 10.1021/acs.jmedchem.7b00718
O.A. Gapurenko, R.M. Minyaev, V.I. Minkin, Nonclassical OrganosiliconCompounds, In Organosilicon Compounds; V.Y. Lee (Ed.), Elsevier, 2017, Vol. 1, pp 3–24.
P. Xiao, L. Gao, Z. Song, Chem. Eur. J. 25 (2019) 2407–2422.
doi: 10.1002/chem.201803803
X. Zhang, J. Fang, C. Cai, et al., Chin. Chem. Lett. 32 (2021) 1280–1292.
X. Zhang, J. Fang, C. Cai, et al., Chin. Chem. Lett. 32 (2021) 1280–1292.
L. Li, W.S. Huang, Z. Xu, et al., Sci. China Chem. 66 (2023) 1654–1687.
doi: 10.1007/s11426-022-1480-y
I.F. Yu, J.W. Wilson, J.F. Hartwig, Chem. Rev. 123 (2023) 11619–11663.
doi: 10.1021/acs.chemrev.3c00207
J. Gao, Y. Ge, C. He, Chem. Soc. Rev. 53 (2024) 4648–4673.
doi: 10.1039/d3cs00893b
M. Geyer, E. Wellner, U. Jurva, et al., ChemMedChem 10 (2015) 911–924.
doi: 10.1002/cmdc.201500040
K. Igawa, D. Yoshihiro, Y. Abe, et al., Angew. Chem. Int. Ed. 55 (2016) 5814–5818.
doi: 10.1002/anie.201511728
E. Rémond, C. Martin, J. Martinez, et al., Chem. Rev. 116 (2016) 11654–11684.
doi: 10.1021/acs.chemrev.6b00122
B. Liu, K. Gai, H. Qin, et al., J. Med. Chem. 63 (2020) 5312–5323.
doi: 10.1021/acs.jmedchem.0c00082
Y. Fan, J. Jing, R.Q. Tong, et al., Org. Lett. 25 (2023) 455–460.
doi: 10.1021/acs.orglett.2c03698
L.L. Anderson, K.A. Woerpel, Org. Lett. 11 (2009) 425–428.
doi: 10.1021/ol802412b
K.M. Buchner, K.A. Woerpel, Organometallics 29 (2010) 1661–1669.
doi: 10.1021/om901042j
M. Devillard, N. Nour Eddine, M. Cordier, et al., Angew. Chem. Int. Ed. 60 (2021) 12356–12359.
doi: 10.1002/anie.202102540
L. Zhang, K. An, Y. Wang, et al., J. Am. Chem. Soc. 143 (2021) 3571–3582.
doi: 10.1021/jacs.0c13335
Y. Xu, W. Xu, X. Chen, et al., Chem. Sci. 12 (2021) 11756–11761.
doi: 10.1039/d1sc03487a
B. Shen, D. Pan, W. Xie, et al., Angew. Chem. Int. Ed. 63 (2024) e202315230.
doi: 10.1002/anie.202315230
X.B. Wang, Z.J. Zheng, J.L. Xie, et al., Angew. Chem. Int. Ed. 59 (2020) 790–797.
doi: 10.1002/anie.201913060
X.C. Wang, B. Li, C.W. Ju, et al., Nat. Commun. 13 (2022) 3392.
doi: 10.1038/s41467-022-31006-y
H. Chen, J. Peng, Q. Pang, et al., Angew. Chem. Int. Ed. 61 (2022) e202212889.
Y. Sun, K. Zhou, C. Ma, et al., Green Synth. Catal. 5 (2023) 5 205–210.
doi: 10.1109/prml59573.2023.10348300
W.T. Zhao, F. Gao, D. Zhao, Angew. Chem. Int. Ed. 57 (2018) 6329–6332.
doi: 10.1002/anie.201803156
Y. Qin, L. Li, J.Y. Liang, et al., Chem. Sci. 12 (2021) 14224–14229.
doi: 10.1039/d1sc04180k
J. Zhang, D. Pan, H.X. Zhang, et al., CCS Chem. 5 (2023) 1753–1762.
doi: 10.31635/ccschem.023.202302938
M.H. Zhu, X.W. Zhang, M. Usman, et al., ACS Catal. 11 (2021) 5703–5708.
doi: 10.1021/acscatal.1c00975
M. Liu, N. Yan, H. Tian, Angew. Chem. Int. Ed. 63 (2024) e202319187.
doi: 10.1002/anie.202319187
Y. Qin, J.L. Han, C.W. Ju, et al., Angew. Chem. Int. Ed. 59 (2020) 8481–8485.
doi: 10.1002/anie.202001539
J. Zhang, N. Yan, C.W. Ju, et al., Angew. Chem. Int. Ed. 60 (2021) 25723–25728.
doi: 10.1002/anie.202111025
K.L. Yin, S. Zhao, Y. Qin, et al., ACS Catal. 12 (2022) 13999–14005.
doi: 10.1021/acscatal.2c04441
D. Mu, W. Yuan, S. Chen, et al., J. Am. Chem. Soc. 142 (2020) 13459–13468.
doi: 10.1021/jacs.0c04863
H. Zhang, D. Zhao, ACS Catal. 11 (2021) 10748–10753.
doi: 10.1021/acscatal.1c03112
Y. Shi, X. Shi, J. Zhang, et al., Nat. Commun. 13 (2022) 6697.
doi: 10.1038/s41467-022-34466-4
Q. Zhang, B.F. Shi, Chem. Sci. 12 (2021) 841–852.
doi: 10.1039/d0sc05944g
J.W. Wilson, B. Su, M. Yoritate, et al., J. Am. Chem. Soc. 145 (2023) 19490–19495.
doi: 10.1021/jacs.3c03127
F.H. Gou, F. Ren, Y. Wu, et al., Angew. Chem. Int. Ed. 63 (2024) e202404732.
doi: 10.1002/anie.202404732
J. Xian, X. Sheng, Y. Lin, et al., Adv. Synth. Catal. 366 (2024) 1763–1769.
doi: 10.1002/adsc.202400028
Q. Li, M. Driess, J.F. Hartwig, Angew. Chem. Int. Ed. 53 (2014) 8471–8474.
doi: 10.1002/anie.201404620
J.F. Hartwig, E.A. Romero, Tetrahedron 75 (2019) 4059–4070.
doi: 10.1016/j.tet.2019.05.055
Q.C. Mu, J. Chen, C.G. Xia, et al., Coordin. Chem. Rev. 374 (2018) 93–113.
B. Li, P.H. Dixneuf, Chem. Soc. Rev. 50 (2021) 5062–5085.
doi: 10.1039/d0cs01392g
W. Wang, L. Gao, Z. Song, Synthesis 54 (2022) 2749–2764.
F. Chen, L. Liu, W. Zeng, Front. Chem. 11 (2023) 1200494.
doi: 10.3389/fchem.2023.1200494
M. Cypryk, J. Chojnowski, J. Kurjata, Tertiary silyloxonium ions in the ring-opening polymerization (ROP) of cyclosiloxanes: cationic ROP of octamethyltetrasila-1, 4-dioxane in: S.J. Clarson, J.J. Fitzgerald, M.J. Owen, S.S. Smith, M.E. Van Dyke (Eds.), Science and Technology of Silicones and Silicone-Modified Materials; American Chemical Society, Washington, 2007, Vol. 964, pp 10–26.
D. Wang, M. Li, X. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 7066–7071.
doi: 10.1002/anie.202015117
Y. Xu, M. Sun, W. Xu, et al., J. Am. Chem. Soc. 145 (2023) 15303–15312.
doi: 10.1021/jacs.3c02875
M. Catellani, E. Motti, N. Della Ca', Acc. Chem. Res. 41 (2008) 1512–1522.
doi: 10.1021/ar800040u
J. Ye, M. Lautens, Nat. Chem. 7 (2015) 863–870.
doi: 10.1038/nchem.2372
N. Della Ca', M. Fontana, E. Motti, et al., Acc. Chem. Res. 49 (2016) 1389–1400.
doi: 10.1021/acs.accounts.6b00165
K. Zhao, L. Ding, Z. Gu, Synlett 29 (2018) 129–140.
J. Wang, G. Dong, Chem. Rev. 119 (2019) 7478–7528.
doi: 10.1021/acs.chemrev.9b00079
J. Ye, M. Lautens, C−H Functionalization of Arenes Under Palladium/Norbornene Catalysis. In Remote C−H Bond Functionalizations: Methods and Strategies in Organic Synthesis; D. Maiti, S. Guin (Eds.), Wiley-VCH, Weinheim, Germany, 2021, pp 59–114.
A.J. Rago, G. Dong, Green Synth. Catal. 2 (2021) 216–227.
Y. Zhang, Acc. Chem. Res. 55 (2022) 3507–3518.
doi: 10.1021/acs.accounts.2c00627
Y. Ma, Q. Gao, L. Zhou, et al., Chin. J. Chem. 40 (2022) 675–680.
doi: 10.1002/cjoc.202100693
H.G. Cheng, S. Jia, Q. Zhou, Acc. Chem. Res. 56 (2023) 573–591.
doi: 10.1021/acs.accounts.2c00781
K.M. Gericke, D.I. Chai, N. Bieler, et al., Angew. Chem. Int. Ed. 48 (2009) 1447–1451.
doi: 10.1002/anie.200805512
H. Liu, M. El-Salfiti, D.I. Chai, et al., Org. Lett. 14 (2012) 3648–3651.
doi: 10.1021/ol301495q
H. Zheng, Y. Zhu, Y. Shi, Angew. Chem. Int. Ed. 53 (2014) 11280–11284.
doi: 10.1002/anie.201405365
L. Fan, J. Liu, L. Bai, et al., Angew. Chem. Int. Ed. 56 (2017) 14257–14261.
doi: 10.1002/anie.201708310
T.T. Hao, H.R. Liang, Y.H. Ou-Yang, et al., J. Org. Chem. 83 (2018) 4441–4454.
doi: 10.1021/acs.joc.8b00150
A. Gaspar, M.J. Matos, J. Garrido, et al., Chem. Rev. 114 (2014) 4960–4992.
doi: 10.1021/cr400265z
J. Reis, A. Gaspar, N. Milhazes, et al., J. Med. Chem. 60 (2017) 7941–7957.
doi: 10.1021/acs.jmedchem.6b01720
S. Tian, T. Luo, Y. Zhu, et al., Chin. Chem. Lett. 31 (2020) 3073–3082.
S.Y. Yang, W.Y. Han, C. He, et al., Org. Lett. 21 (2019) 8857–8860.
doi: 10.1021/acs.orglett.9b03565
M.Z. Li, Q. Tong, W.Y. Han, et al., Org. Biomol. Chem. 18 (2020) 1112–1116.
doi: 10.1039/c9ob02690h
C. He, W.Y. Han, B.D. Cui, et al., Adv. Synth. Catal. 362 (2020) 3655–3661.
doi: 10.1002/adsc.202000488
W.Q. Zhu, Y.C. Fang, W.Y. Han, et al., Org. Chem. Front. 8 (2021) 3082–3090.
doi: 10.1039/d1qo00222h
W.Q. Zhu, Z.W. Zhang, W.Y. Han, et al., Org. Chem. Front. 8 (2021) 3413–3420.
doi: 10.1039/d1qo00458a
F. Li, H.M. Li, R.F. Xiu, et al., Org. Lett. 24 (2022) 9392–9397.
doi: 10.1021/acs.orglett.2c03713
Y.C. Fang, J.H. Chen, R.F. Xiu, et al., Org. Chem. Front. 10 (2023) 3752–3759.
doi: 10.1039/d3qo00764b
D. Wang, L. Désaubry, G. Li, et al., Adv. Synth. Catal. 363 (2021) 1–6.
J. Tang, Z. Yang, Y. Song, et al., Mol. Catal. 524 (2022) 112320.
Jing-Qi Tao , Shuai Liu , Tian-Yu Zhang , Hong Xin , Xu Yang , Xin-Hua Duan , Li-Na Guo . Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbonylation cascade. Chinese Chemical Letters, 2024, 35(6): 109263-. doi: 10.1016/j.cclet.2023.109263
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
Xiaojuan Lv , Yuting Dong , Hongliang Huang , Dariusz W. Szczepanik , Naoki Aratani , Takahisa Ikeue , Feng Chen , Tao Zhang , Fengxian Qiu , Toshiharu Teranishi , Songlin Xue . Local aromatic ring cleaves the global aromatic ring in hexaphyrin(2.1.2.1.2.1). Chinese Chemical Letters, 2025, 36(7): 110435-. doi: 10.1016/j.cclet.2024.110435
Shuai Liang , Wen-Jing Jiang , Ji-Xiang Hu . Achieving colossal anisotropic thermal expansion via synergism of spin crossover and rhombus deformation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100430-100430. doi: 10.1016/j.cjsc.2024.100430
Guodong Wang , Mengying Jia , Haitao Liu , Yong Liu , Zhiguo Zhang , Xianxiu Xu . Expeditious synthesis and applications of isoquinoline ring-modified Quinap derivatives. Chinese Chemical Letters, 2025, 36(8): 110705-. doi: 10.1016/j.cclet.2024.110705
Wenling Yuan , Fengli Li , Zhe Chen , Qiaoxin Xu , Zhenhua Guan , Nanyu Yao , Zhengxi Hu , Junjun Liu , Yuan Zhou , Ying Ye , Yonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788
Yue Sun , Liming Yang , Yaohang Cheng , Guanghui An , Guangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250
Qiuyun Li , Yannan Zhu , Yining Wang , Gang Qi , Wen-Juan Hao , Kelu Yan , Bo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494
Wenyu Gao , Liming Zhang , Chuang Zhao , Lixiang Liu , Xingran Yang , Jinbo Zhao . Controlled semi-Pinacol rearrangement on a strained ring: Efficient access to multi-substituted cyclopropanes by group migration strategy. Chinese Chemical Letters, 2024, 35(9): 109447-. doi: 10.1016/j.cclet.2023.109447
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787
Yuhan Zhang , Xiao-Lin Zhang , Han Ding , Yuan Xu , Xue-Wei Liu . Catalytic ring-strain release toward a facial and efficient synthesis of versatile C-glycosides. Chinese Chemical Letters, 2025, 36(7): 110560-. doi: 10.1016/j.cclet.2024.110560
Xue-Wen Wu , Bin-Bao Wang , Yu Qin , Yong-Xiang Huang , Muhammad Aurang Zeb , Bin Cheng , Xiao-Li Li , Chang-Bo Zheng , Wei-Lie Xiao . Diterpenoids with unexpected 5/6/6-fused ring system and its dimer from Strophioblachia glandulosa. Chinese Chemical Letters, 2025, 36(8): 110584-. doi: 10.1016/j.cclet.2024.110584
Juan He , Jiao-Xian Du , Meng Wang , Xiao-Dong Luo , Tao Feng . Irpexlactones A and B, a pair of ring-rearranged tremulane sesquiterpenoids from the basidiomycete Irpex lacteus and their anti-inflammatory activity. Chinese Chemical Letters, 2025, 36(10): 110769-. doi: 10.1016/j.cclet.2024.110769
Wen-Rui Li , Ru-Bing Wang , Huiqiang Wang , Jin-Yao Yong , Yu-Huan Li , Shi-Shan Yu , Shuang-Gang Ma . Ring-reorganization strategy for asymmetric synthesis of sesquiterpenoid illihenin A and its antiviral activity evaluation. Chinese Chemical Letters, 2025, 36(11): 110945-. doi: 10.1016/j.cclet.2025.110945
Yang Gao , Huarui Zhang , Yan Xie , Xinjun Xu , Yahui Liu , Hao Lu , Wenkai Zhang , Yuqiang Liu , Cuihong Li , Zhishan Bo . Effect of fluorination positions at diphenylamino flanking groups on the photovoltaic performance for nonfused ring electron acceptors. Chinese Chemical Letters, 2026, 37(1): 111622-. doi: 10.1016/j.cclet.2025.111622
Yi Zhang , Yong Chen , Qian Wang , Jian-Qiu Li , Song-En Liu , Yu Liu . Slide ring polymer in situ cross-linked conductive ionogel for self-powered sensor. Chinese Chemical Letters, 2026, 37(2): 111676-. doi: 10.1016/j.cclet.2025.111676
Jianfang Cao , Xue Ma , Xinyu Chen , Tianci Zhang , Wen Sun . Theoretical perspective on fine-tuning ISC efficiency in D-A BODIPY photosensitizers through heteroatom incorporation and nitrogen ring strain modulation. Chinese Chemical Letters, 2025, 36(10): 110897-. doi: 10.1016/j.cclet.2025.110897
Pengwei Chen , Xian Ma , Ni Song , Jianjun Wang , Han Ding , Peng Wang , Hongzhi Cao , Xue-Wei Liu , Zhihua Lv , Ming Li . Synthesis of alduronic acid lactones and rare sugar glyconolactones via decarboxylative oxygenation of uronic acids: Construction of polyhydroxylated fused-ring alkaloids. Chinese Chemical Letters, 2025, 36(11): 110983-. doi: 10.1016/j.cclet.2025.110983
Feng Zhao , Hongyu Ding , Ting Sun , Chao Shen , Zu-Li Wang , Wei Wei , Dong Yi . Visible-light-promoted multi-component carbene transfer reactions of diazo compounds via ring-opening of cyclic ethers. Chinese Chemical Letters, 2026, 37(2): 111834-. doi: 10.1016/j.cclet.2025.111834
Qinghong Zhang , Qiao Zhao , Xiaodi Wu , Li Wang , Kairui Shen , Yuchen Hua , Cheng Gao , Yu Zhang , Mei Peng , Kai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167