Citation: Jianju Li, Xinwei Chen, Yang Yu, Hao Ma, Xinhui Xia, Zixuan Zhao, Junqiu Jiang, Qingliang Zhao, Yingzi Lin, Liangliang Wei. Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors[J]. Chinese Chemical Letters, ;2025, 36(7): 110410. doi: 10.1016/j.cclet.2024.110410 shu

Insights into bioavailable heavy metal impact driven by sludge application on soil nitrification: Toxicity thresholds and influential factors

  • Corresponding author: Liangliang Wei, weill333@163.com
  • Received Date: 23 April 2024
    Revised Date: 6 August 2024
    Accepted Date: 4 September 2024
    Available Online: 4 September 2024

Figures(6)

  • Strict regulations on heavy metal (HM) limits impede the sludge land utilization for carbon emission reduction. This study aimed to evaluate the impact of bioavailable HMs (Cd, Cu, and Zn) on soil nitrification and determine toxicity thresholds via two cycles of sludge land application tests over 185 days. HMs inhibited gene abundance in their labile fractions, with the most affected being nitrite-oxidizing bacteria (NOB)-nxrB, followed by ammonia-oxidizing bacteria (AOB)-amoA, NOB-nxrA, and ammonia oxidizing archaea (AOA)-amoA. Toxicity thresholds for incremental labile fractions of HMs (in mg/kg) were determined as 0.35 for Cd, 21.73 for Cu, and 84.04 for Zn. Additionally, AOB, as the core nitrifiers, significantly correlated (P < 0.05) with ammonia nitrogen, soil organic matter, total phosphorus, and total potassium, playing a pivotal role in maintaining intricate interactions within HMs-spiked sludge-treated soil systems. The acute toxicity effects of HMs on potential ammonia oxidation (PAO), measured by inhibition rates, were 77.04%, 73.63%, and 67.06% for Cd, Cu, and Zn, with labile fractions contributing 33.79%, 40.19%, and 28.37%, respectively. Long-term sludge land application revealed chronic toxicity of HMs to PAO through the reshaping of ammonia-oxidizing microorganisms, particularly Cu and Zn. These findings provide insights into HM toxicity thresholds and their impact on nitrification, supporting sustainable sludge land management.
  • 加载中
    1. [1]

      X. Li, S. Yuan, C. Cai, et al., Environ. Pollut. 341 (2024) 122907.

    2. [2]

      A. Pathak, M.G. Dastidar, T.R. Sreekrishnan, J. Environ. Manag. 90 (2009) 2343–2353.

    3. [3]

      K. Qin, L. Wei, J. Li, et al., Chin. Chem. Lett. 31 (2020) 2603–2613.

    4. [4]

      J. Zhang, Z. Liu, B. Tian, et al., J. Hazard. Mater. 441 (2023) 129891.

    5. [5]

      V. Kapoor, X. Li, M. Elk, et al., Environ. Sci. Technol. 49 (2015) 13454–13462.  doi: 10.1021/acs.est.5b02748

    6. [6]

      L. Wei, F. Zhu, Q. Li, et al., Environ. Int. 144 (2020) 106093.

    7. [7]

      H. Yesil, R. Molaey, B. Calli, A.E. Tugtas, Water Res. 201 (2021) 117303.

    8. [8]

      Y. Xu, Y. Feng, Pol. J. Environ. Stud. 25 (2016) 405–412.  doi: 10.15244/pjoes/60861

    9. [9]

      J. Jia, J. Bai, R. Xiao, et al., Sci. Total Environ. 807 (2022) 151725.

    10. [10]

      L. Li, Y. Ling, H. Wang, et al., Chin. Chem. Lett. 31 (2020) 28–38.  doi: 10.5703/educationculture.36.1.0028

    11. [11]

      M. Kuypers, H.K. Marchant, B. Kartal, Nat. Rev. Microbiol. 16 (2018) 263–276.  doi: 10.1038/nrmicro.2018.9

    12. [12]

      B. Xi, H. Yu, Y. Li, et al., J. Hazard. Mater. 403 (2021) 123853.

    13. [13]

      S. Tang, Y. Rao, S. Huang, et al., J. Environ. Manag. 326 (2023) 116641.

    14. [14]

      S. Cela, M.E. Sumner, Commun. Soil Sci. Plant Anal. 33 (2002) 19–30.

    15. [15]

      L. Lu, C. Chen, T. Ke, et al., Sci. Total Environ. 830 (2022) 154732.

    16. [16]

      H. He, H. Liu, T. Shen, et al., Geoderma. 321 (2018) 141–150.

    17. [17]

      Y. Wang, X. Zeng, Y. Zhang, et al. J. Environ. Sci. 127 (2023) 15–29.

    18. [18]

      J. Li, Y. Huang, Y. Hu, et al., J. Environ. Sci. 44 (2016) 131–140.  doi: 10.26599/jgse.2016.9280016

    19. [19]

      C. Yanez, J. Verdejo, H. Moya, et al., Chemosphere. 300 (2022) 134517.

    20. [20]

      X. Zhang, X. Zhang, L. Li, et al., Environ. Res. 204 (2022) 111941.

    21. [21]

      R. Dhanker, S. Chaudhary, S. Goyal, V.K. Garg, Environ. Technol. Innov. 23 (2021) 101642.

    22. [22]

      M.Z. Hashmi, Naveedullah, H. Shen, et al., Environ. Int. 64 (2014) 28–39.

    23. [23]

      S. Ruyters, J. Mertens, D. Springael, E. Smolders, Soil Biol. Biochem. 42 (2010) 766–772.

    24. [24]

      J. Song, Q. Shen, L. Wang, et al., Environ. Pollut. 243 (2018) 510–518.  doi: 10.3390/f9090510

    25. [25]

      H. Zhao, J. Lin, X. Wang, et al., Environ. Sci. Technol. 55 (2021) 14305–14315.  doi: 10.1021/acs.est.1c04409

    26. [26]

      A.E. Taylor, L.H. Zeglin, T.A. Wanzek, D.D. Myrold, P.J. Bottomley, ISME J. 6 (2012) 2024–2032.  doi: 10.1038/ismej.2012.51

    27. [27]

      Y. Geng, C. Zhang, Y. Zhang, et al., Sci. Pollut. Res. 28 (2021) 29146–29156.  doi: 10.1007/s11356-021-12762-8

    28. [28]

      S. Qin, H. Liu, Z. Nie, et al., Pedosphere. 30 (2020) 168–180.

    29. [29]

      J. Li, H. Ma, H. Yu, et al., J. Hazard. Mater. 466 (2024) 133552.

    30. [30]

      A. Tessier, P.G.C. Campbell, M. Bisson, Anal. Chem. 51 (1979) 844–851.  doi: 10.1021/ac50043a017

    31. [31]

      J. Li, H. Yang, K. Qin, et al., J. Hazard. Mater. 423 (2022) 126994.

    32. [32]

      Z. Cheng, J. Shi, Y. He, L. Wu, J. Xu, J. Hazard. Mater. 426 (2022) 128095.

    33. [33]

      S. Cipullo, B. Snapir, G. Prpich, P. Campo, F. Coulon, Chemosphere 215 (2019) 388–395.

    34. [34]

      T. Zeng, Y. Liang, Q. Dai, et al., Chin. Chem. Lett. 33 (2022) 5184–5188.

    35. [35]

      B. Wang, B. Huang, Y.B. Qi, W.Y. Hu, W.X. Sun, Chin. Chem. Lett. 23 (2012) 1287–1290.

    36. [36]

      G. Liu, Z. Yu, X. Liu, et al., J. Chem. 2020 (2020) 1–10.

    37. [37]

      J. Yang, Z. Guo, L. Jiang, et al., Ecotoxicol. Environ. Saf. 239 (2022) 113617.

    38. [38]

      G. Xueyuan, L.J. Evans, S.J. Barabash, Geochim. Cosmochim. Acta 74 (2010) 5718–5728.

    39. [39]

      H.B. Bradl, J. Colloid Interface Sci. 277 (2004) 1–18.

    40. [40]

      L. Mouni, L. Belkhiri, A. Bouzaza, J. Bollinger, Environ. Earth Sci. 75 (2016) 1–8.

    41. [41]

      H. Liu, Waste Manag. 56 (2016) 575–583.

    42. [42]

      M.M. Ali, A. Khanom, K. Nahar, et al., Environ. Contam. Toxicol. 106 (2021) 707–713.  doi: 10.1007/s00128-021-03112-y

    43. [43]

      D. Fan, S. Wang, Y. Guo, et al., Sci. Total Environ. 757 (2021) 143771.

    44. [44]

      P. Gong, S.D. Siciliano, S. Srivastava, C.W. Greer, G.I. Sunahara, Hum. Ecol. Risk Assess. 8 (2002) 1067–1081.  doi: 10.1080/1080-700291905828

    45. [45]

      Q. Wu, K. Huang, H. Sun, et al., J. Hazard. Mater. 343 (2018) 166–175.

    46. [46]

      T.S. Radniecki, R.L. Ely, Biotechnol. Bioeng. 99 (2008) 1085–1095.  doi: 10.1002/bit.21672

    47. [47]

      J.E. Coleman, Biochem. Biophys. Res. Commun. 60 (1974) 641.

    48. [48]

      T.S. Radniecki, L. Semprini, M.E. Dolan, Biotechnol. Bioeng. 104 (2009) 1004–1011.  doi: 10.1002/bit.22454

    49. [49]

      X. Zhao, J. Huang, J. Lu, Y. Sun, Ecotoxicol. Environ. Saf. 170 (2019) 218–226.

    50. [50]

      W. Longhua, C. Miaomiao, L. Zhu, et al., J. Soils Sediments 12 (2012) 531–541.

    51. [51]

      C.D.N.A. Tsadilas, T. Matsi, N. Barbayiannis, D. Dimoyiannis, Commun. Soil Sci. Plant Anal. 26 (1995) 2603–2619.  doi: 10.1080/00103629509369471

    52. [52]

      A. Charlton, R. Sakrabani, S. Tyrrel, C.M. Rivas, S.P. McGrath, et al., Environ. Pollut. 219 (2016) 1021–1035.

    53. [53]

      Y. Xing, Y.X. Si, C. Hong, Y. Li, Arch. Environ. Contam. Toxicol. 69 (2015) 20–31.  doi: 10.1007/s00244-015-0144-9

    54. [54]

      B. Shen, X. Wang, Y. Zhang, et al., Sci. Total Environ. 711 (2020) 135229.

    55. [55]

      J. Li, Y. Zheng, Y. Liu, et al., Microb. Ecol. 67 (2014) 931–941.  doi: 10.1007/s00248-014-0391-8

    56. [56]

      S. Cela, M.E. Sumner, Water Air Soil Pollut. 141 (2002) 91–104.

    57. [57]

      J. Mertens, K. Broos, S.A. Wakelin, et al., ISME J. 3 (2009) 916–923.  doi: 10.1038/ismej.2009.39

    58. [58]

      W. Qin, S.P. Wei, Y. Zheng, et al., Nat. Microbiol. 9 (2024) 524–536.  doi: 10.1038/s41564-023-01593-7

    59. [59]

      A. Ginawi, L. Wang, H. Wang, B. Yu, Y. Yunjun, PeerJ 8 (2020) e8256.  doi: 10.7717/peerj.8256

  • 加载中
    1. [1]

      Yufeng ZHANGHaotian QIJingya ZHONGLeiming LANGGuojun YUANSiqi LUHaiying WANGGuangxiang LIU . S-anion effects on the improvement of adsorption capacity and performance for benzyl alcohol electro-oxidation catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2591-2600. doi: 10.11862/CJIC.20250282

    2. [2]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    3. [3]

      Weixin ZhaoShuocheng ShaoHao MaJianyuan ZhenShufei HeChuandong WuLiangliang Wei . Deciphering the potential mechanisms and influencing factors of the effects of micro(nano)plastics on microbe in sludge anaerobic digestion system. Chinese Chemical Letters, 2025, 36(11): 110846-. doi: 10.1016/j.cclet.2025.110846

    4. [4]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    5. [5]

      Shili WangMamitiana Roger RazanajatovoXuedong DuShunli WanXin HeQiuming PengQingrui Zhang . Recent advances on decomplexation mechanisms of heavy metal complexes in persulfate-based advanced oxidation processes. Chinese Chemical Letters, 2024, 35(6): 109140-. doi: 10.1016/j.cclet.2023.109140

    6. [6]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    7. [7]

      Xinwen LiLili LiJunqiu JiangWangyang MeiZhaoxia WangQingwei GaoHuimin ZhouLiangliang WeiQingliang Zhao . Seeking breakthroughs in advanced oxidation processes for waste activated sludge dewatering: A critical review of developments, bibliometrics and sustainable solutions. Chinese Chemical Letters, 2025, 36(11): 110847-. doi: 10.1016/j.cclet.2025.110847

    8. [8]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    9. [9]

      Xiaoqiang WangFangyuan ZhouYue LiuZhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420

    10. [10]

      Youpeng WangYuan JiChengbo LiZhaoyang ChenXu LiTingting ZhengQiu JiangChuan Xia . Advances in platinum-based materials for electrocatalytic ammonia oxidation: Mechanisms and research progress. Chinese Chemical Letters, 2025, 36(9): 110370-. doi: 10.1016/j.cclet.2024.110370

    11. [11]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    12. [12]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    13. [13]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    14. [14]

      Yaxian LiangQingyi LiLiwei HuRuohan ZhaiFan LiuLin TanXiaofei WangHuixu Xie . Environmentally friendly polylysine gauze dressing for an innovative antimicrobial approach to infected wound management. Chinese Chemical Letters, 2024, 35(10): 109459-. doi: 10.1016/j.cclet.2023.109459

    15. [15]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    16. [16]

      Guoliang Liu Zhiqiang Liu Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308

    17. [17]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    18. [18]

      Yujuan ZhouKecheng Jie . Conformationally adaptive metal–organic cages for dynamic guest encapsulation. Chinese Chemical Letters, 2025, 36(6): 111007-. doi: 10.1016/j.cclet.2025.111007

    19. [19]

      Cheng WangLi ZhouZhenghao FeiYanqing WangYukou Du . Surface dynamic reconstruction of Ni-based catalysts for electrooxidation reaction. Chinese Chemical Letters, 2025, 36(12): 111746-. doi: 10.1016/j.cclet.2025.111746

    20. [20]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

Metrics
  • PDF Downloads(2)
  • Abstract views(946)
  • HTML views(26)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return