Citation: Liangbo Zhang, Jun Cheng, Yahui Shi, Kunjie Hou, Qi An, Jingyi Li, Baohui Cui, Fei Chen. Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism[J]. Chinese Chemical Letters, ;2025, 36(7): 110400. doi: 10.1016/j.cclet.2024.110400 shu

Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism

    * Corresponding authors.
    E-mail addresses: hkj@hnu.edu.cn (K. Hou), fchen0505@cqu.edu.cn (F. Chen).
  • Received Date: 21 May 2024
    Revised Date: 14 July 2024
    Accepted Date: 2 September 2024
    Available Online: 3 September 2024

Figures(4)

  • The high band gap of zinc oxide (ZnO) has significantly limited its potential application for organic contaminant removal in photocatalysis. In this study, ZnO/halloysites (HNTs) composites (ZnO/HNTs) were prepared using a high-temperature calcination method to enhance the removal of tetracycline hydrochloride (TCH). The experimental results demonstrated that the band gap of ZnO/HNTs decreased to 3.12 eV, compared to 3.21 eV for pure ZnO. The observed removal rate (kobs) of TCH in the ZnO/HNTs/vis system was 1.90 × 10–2 min-1, significantly higher than the rates in the HNTs/vis (1.25 × 10–3 min-1) and ZnO/vis (1.13 × 10–2 min-1) systems. Additionally, ZnO/HNTs exhibited strong resistance to coexisting natural organic and inorganic matter, maintaining high pollutant removal efficiency in natural water samples. The ZnO/HNTs/vis system also effectively removed other common organic pollutants, such as ciprofloxacin and methylene blue. Cycle tests indicated that the ZnO/HNTs/vis system retained 65.57% of its original efficiency, demonstrating good reusability and versatility. Scavenging and electron paramagnetic resonance experiments identified that h+ was the primary species in the ZnO/HNTs/vis system, with other species playing auxiliary roles in TCH degradation. This study provides valuable insights into the design of novel ZnO-based photocatalysts for the degradation of organic pollutants in water.
  • 加载中
    1. [1]

      D. Constantino, M.M.L. Dias, A. Silva, J.L. Faria, C.G. Silva, J. Clean. Prod. 340 (2022) 130800.

    2. [2]

      F. Chen, Q. Yang, Y. Wang, et al., Chem. Eng. J. 348 (2018) 157–170.

    3. [3]

      C. Sun, K.F. Zhao, A. Boies, S.N. Xiao, Z.G. Yi, Appl. Catal. B: Environ. 339 (2023) 123124.

    4. [4]

      J. Zhang, J. Zhou, Mat. Sci. Semicon. Proc. 157 (2023) 107345.

    5. [5]

      R. Jiang, H. Zhu, X. Zang, et al., Int. J. Biol. Macromol. 254 (2023) 127887.

    6. [6]

      A.H. Bhat, N.A. Chopan, H.T.N. Chisti, Nanotechnology 34 (2023) 495604.  doi: 10.1088/1361-6528/acf6c4

    7. [7]

      M. Saqib, S.U. Rahman, S. Ali, et al., Mater. Today. Commun. 37 (2023) 107335.

    8. [8]

      P.C. Quero Jiménez, A. Hernández Ramírez, J.L. Guzmán Mar, et al., J. Photoch. Photobio. A: Chem. 446 (2024) 115154.

    9. [9]

      J. Louis, N.T. Padmanabhan, M.K. Jayaraj, H. John, Mater. Res. Bull. 169 (2024) 112542.

    10. [10]

      M. Liu, D.J. ZhixinJia, C. Zhou, Prog. Polym. Sci. 39 (2014) 1498–1525.

    11. [11]

      X.Y. Chen, Z.D. Zhang, S.H. Chen, et al., Opt. Mater. 134 (2022) 113202.

    12. [12]

      P. Maziarz, J. Matusik, A.E. Radziszewska, J. Environ. Chem. Eng. 7 (2019) 103507.

    13. [13]

      Q. Sun, Y. Sun, M. Zhou, et al., Ceram. Int. 48 (2022) 7283–7290.

    14. [14]

      R. Nasser, W.B.H. Othmen, H. Elhouichet, M. Ferid, Appl. Surf. Sci. 393 (2017) 486–495.

    15. [15]

      N. Kamarulzaman, M.F. Kasim, N.F. Chayed, Results Phys. 6 (2016) 217–230.

    16. [16]

      J. Wang, J. Si, Y. Hao, et al., Langmuir 38 (2022) 1231–1242.  doi: 10.1021/acs.langmuir.1c03024

    17. [17]

      H. Cheng, Q. Liu, J. Yang, J. Zhang, R.L. Frost, Thermochim. Acta 511 (2010) 124–128.

    18. [18]

      B. Zsirka, V. Vagvolgyi, E. Horvath, et al., Minerals 12 (2022) 476.  doi: 10.3390/min12040476

    19. [19]

      X. Gao, X. Zhang, Y. Wang, et al., Chem. Eng. J. 273 (2015) 156–165.

    20. [20]

      Z. Pi, K. Hou, F. Yao, et al., Chem. Eng. J. 427 (2022) 131749.

    21. [21]

      J. Guo, C.H. Shen, J. Sun, et al., Sep. Purif. Technol. 259 (2021) 118109.

    22. [22]

      N. Aghababaei, M. Abdouss, H. Hosseini-Monfared, F. Ghanbari, J. Water Process. Eng. 53 (2023) 103702.

    23. [23]

      Z. Shen, H. Zhou, P. Zhou, et al., J. Hazard. Mater. 425 (2021) 127781.

    24. [24]

      X.J. Chen, C.W. Bai, Y. Sun, et al., Environ. Sci. Technol. 57 (2023) 20206–20218.  doi: 10.1021/acs.est.3c06370

    25. [25]

      F. Chen, Y. Sun, X. Huang, et al., Proc. Natl. Acad. Sci. U. S. A. 124 (2024) 2314396121.

    26. [26]

      J. Wu, T. Yang, F. Chen, H. Yu, PNAS Nexus 3 (2024) 1–10.

    27. [27]

      M. Preeyanghaa, A. Ilamparidhi, J. Madhavan, B. Neppolian, Chemosphere 303 (2022) 135070.

    28. [28]

      D. Qiao, Z. Li, J. Duan, X. He, Chem. Eng. J. 400 (2020) 125952.

    29. [29]

      C. Wu, H. Zuo, H. Du, et al., Sep. Purif. Technol. 282 (2022) 120096.

    30. [30]

      X. Gu, R. Xu, G. Yuan, et al., Anal. Chim. Acta 675 (2010) 64–70.

  • 加载中
    1. [1]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    2. [2]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    3. [3]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    4. [4]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    5. [5]

      Jinhui XuYanting ZhangKecheng WenXinyu WangZhiwei YangYuan HuangGuozhong ZhengLupeng HuangJing Zhang . Enhanced removal of polystyrene nanoplastics by air flotation modified by dodecyltrimethylammonium chloride: Performance and mechanism. Chinese Chemical Letters, 2025, 36(5): 110240-. doi: 10.1016/j.cclet.2024.110240

    6. [6]

      Yuhao MaYufei ZhouHongli LiCheng FangMingchuan YuShaoxia YangJunfeng Niu . Photoelectrocatalytic degradation of refractory organic pollutants in water: Mechanism of active species generation by modulating the photoanode micro-interface. Chinese Chemical Letters, 2026, 37(1): 111249-. doi: 10.1016/j.cclet.2025.111249

    7. [7]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    8. [8]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    9. [9]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    10. [10]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    11. [11]

      Shaojie DengPeihua MaQinghong BaiXin Xiao . The transformation of nor-seco-cucurbit[10]uril to cucurbit[5]uril and cucurbit[8]uril controlled by its own concentration. Chinese Chemical Letters, 2025, 36(2): 109878-. doi: 10.1016/j.cclet.2024.109878

    12. [12]

      Weidan MengYanbo ZhouYi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961

    13. [13]

      Ming-Yi SunLu ZhangYa LiChong-Chen WangPeng WangXueying RenXiao-Hong Yi . Recovering Ag+ with nano-MOF-303 to form Ag/AgCl/MOF-303 photocatalyst: The role of stored Cl ions. Chinese Chemical Letters, 2025, 36(2): 110035-. doi: 10.1016/j.cclet.2024.110035

    14. [14]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    15. [15]

      Hui LiuBaoying XiaoYaming ZhaoWei WangQiong Jia . Adsorption of heavy metals with hyper crosslinked polymers: Progress, challenges and perspectives. Chinese Chemical Letters, 2025, 36(8): 110619-. doi: 10.1016/j.cclet.2024.110619

    16. [16]

      Tingting DuSiyu LuZongnan ZhuMei ZhuYan ZhangJian ZhangJixiang Chen . Pyrazole derivatives: Recent advances in discovery and development of pesticides. Chinese Chemical Letters, 2025, 36(9): 110912-. doi: 10.1016/j.cclet.2025.110912

    17. [17]

      He GuoYongchun WangJunlei WangShoufeng TangTiecheng Wang . Review on application of non-thermal plasma for disinfection: Direct plasma and indirect plasma-activated water. Chinese Chemical Letters, 2026, 37(2): 111275-. doi: 10.1016/j.cclet.2025.111275

    18. [18]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    19. [19]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    20. [20]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

Metrics
  • PDF Downloads(1)
  • Abstract views(977)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return