High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction
-
* Corresponding author.
E-mail address: zhuyunqing@sust.edu.cn (Y. Zhu).
Citation:
Yunqing Zhu, Kaiyue Wen, Xuequan Wan, Gaigai Dong, Junfeng Niu. High efficiency conversion of low concentration nitrate boosted with amorphous Cu0 nanorods prepared via in-situ reconstruction[J]. Chinese Chemical Letters,
;2025, 36(6): 110399.
doi:
10.1016/j.cclet.2024.110399
X. Zhang, Y. Zhang, P. Shi, et al., Sci. Total Environ. 770 (2021) 144674.
doi: 10.1016/j.scitotenv.2020.144674
S. Singh, A.G. Anil, V. Kumar, et al., Chemosphere 187 (2022) 131996.
X. Zou, C. Chen, C. Wang, et al., Sci. Total Environ. 800 (2021) 149645.
doi: 10.1016/j.scitotenv.2021.149645
X. Zhang, Y. Wang, C. Liu, et al., Chem. Eng. J. 403 (2021) 126269.
doi: 10.1016/j.cej.2020.126269
J. Chen, M. Gu, Y. Zhou, et al., Chem. Eng. J. 430 (2022) 132952.
doi: 10.1016/j.cej.2021.132952
M. Kalaruban, P. Loganathan, W.G. Shim, et al., Sep. Purif. Technol. 158 (2016) 62–70.
doi: 10.1016/j.seppur.2015.12.022
W. Li, S. Patton, J.M. Gleason, et al., Environ. Sci. Technol. 52 (2018) 6417–6425.
doi: 10.1021/acs.est.7b06042
L. Gao, F. Han, X. Zhang, et al., Bioresour. Technol. 314 (2020) 123714.
doi: 10.1016/j.biortech.2020.123714
R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065.
doi: 10.1016/j.cej.2019.122065
S. Meng, Y. Ling, M. Yang, et al., J. Environ. Chem. Eng. 11 (2023) 109418.
doi: 10.1016/j.jece.2023.109418
F. Pan, J. Zhou, T. Wang, et al., J. Colloid Interf. Sci. 638 (2023) 26–38.
doi: 10.1016/j.jcis.2023.01.121
Y. Wang, C. Wang, M. Li, et al., Chem. Soc. Rev. 50 (2021) 6720–6733.
doi: 10.1039/d1cs00116g
F.Y. Chen, Z.Y. Wu, S. Gupta, et al., Nat. Nanotechnol. 17 (2022) 759–767.
doi: 10.1038/s41565-022-01121-4
Y. Xue, Q. Yu, J. Fang, et al., Small (2024) 2400505.
doi: 10.1002/smll.202400505
F. Ni, Y. Ma, J. Chen, et al., Chin. Chem. Lett. 32 (2021) 2073–2078.
doi: 10.1016/j.cclet.2021.03.042
W. Zheng, L. Zhu, Z. Yan, et al., Environ. Sci. Technol. 55 (2021) 13231–13243.
G. Tokazhanov, E. Ramazanova, S. Hamid, et al., Chem. Eng. J. 384 (2020) 12352.
Y. Wang, W. Zhou, R. Jia, et al., Angew. Chem. Int. Ed. 59 (2020) 5350–5354.
doi: 10.1002/anie.201915992
J. Zhou, F. Pan, Q. Yao, et al., Appl. Catal. B: Environ. 317 (2022) 121811.
doi: 10.1016/j.apcatb.2022.121811
Y. Wang, A. Xu, Z. Wang, et al., J. Am. Chem. Soc. 142 (2020) 5702–5708.
doi: 10.1021/jacs.9b13347
J. Cai, Y. Wei, A. Cao, et al., Appl. Catal. B: Environ. 316 (2022) 121683.
doi: 10.1016/j.apcatb.2022.121683
Q. Song, S. Zhang, X. Hou, et al., J. Hazard. Mater. 438 (2022) 129455.
doi: 10.1016/j.jhazmat.2022.129455
H. Yu, K. Deng, Z. Wang, et al., Appl. Catal. B: Environ. 318 (2022) 121805.
doi: 10.1016/j.apcatb.2022.121805
P.L. Gai-Boyes, Catal. Rev. 34 (1992) 1–54.
doi: 10.1080/01614949208021918
S. Sun, T. Zhai, C. Liang, et al., Nano Energy 45 (2018) 390–397.
doi: 10.1016/j.nanoen.2018.01.015
L. Zhang, H. Jang, H. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 18821–18829.
doi: 10.1002/anie.202106631
S. Deng, Z. Yuan, Z. Tie, et al., Angew. Chem. Int. Ed. 59 (2020) 22002–22006.
doi: 10.1002/anie.202010287
N. Liu, V. Häublein, X. Zhou, et al., Nano Lett. 15 (2015) 6815–6820.
doi: 10.1021/acs.nanolett.5b02663
L. Li, Z. Hu, L. Tao, et al., ACS Appl. Energy Mater. 3 (2020) 3071–3081.
doi: 10.1021/acsaem.0c00190
P.A. Shinde, S. Park, N.R. Chodankar, et al., Appl. Mater. Today 22 (2021) 100951.
doi: 10.1016/j.apmt.2021.100951
Q. Liang, L. Zhong, C. Du, et al., Adv. Funct. Mater. 2 (2018) 1805075.
X. Wang, X. Yu, S. Wu, et al., ACS Appl. Mater. Interfaces 15 (2023) 15533–15544.
doi: 10.1021/acsami.3c00547
Y. Mi, S. Shen, X. Peng, et al., ChemElectroChem 6 (2019) 2393–2397.
doi: 10.1002/celc.201801826
C. Li, S. Liu, Y. Xu, et al., Nanoscale 14 (2022) 12332.
doi: 10.1039/d2nr03767j
T. Feng, J. Wang, Y. Wang, et al., Chem. Eng. J. 433 (2022) 133495.
doi: 10.1016/j.cej.2021.133495
Z. Wang, L. Xu, F. Huang, et al., Adv. Energy Mater. 9 (2019) 1900390.
doi: 10.1002/aenm.201900390
Y. Sun, S. Gao, F. Lei, et al., Chem. Soc. Rev. 44 (2015) 623–636.
doi: 10.1039/C4CS00236A
H. Xu, J. Wu, W. Luo, et al., Small 16 (2020) 2001775.
doi: 10.1002/smll.202001775
M. Fu, Y. Mao, H. Wang, et al., Chin. Chem. Lett. 35 (2024) 108341.
doi: 10.1016/j.cclet.2023.108341
Q. Song, M. Li, X. Hou, et al., Appl. Catal. B: Environ. 317 (2022) 121721.
doi: 10.1016/j.apcatb.2022.121721
M. Tang, Q. Tong, Y. Li, et al., Chin. Chem. Lett. 34 (2023) 108410.
doi: 10.1016/j.cclet.2023.108410
J. Zhao, Z. Shen, J. Yu, et al., J. Hazard. Mater. 439 (2022) 129653.
doi: 10.1016/j.jhazmat.2022.129653
R. Qi, Z. Wang, M. Zhong, et al. Small 10 (2023) 2308311.
doi: 10.1002/smll.202308311
M. Li, C. Feng, Z. Zhang, et al., J. Hazard. Mater. 171 (2009) 724–730.
doi: 10.1016/j.jhazmat.2009.06.066
X. Zhang, W. Li, E.R. Blatchley, et al., Water Res. 68 (2015) 804–811.
doi: 10.1016/j.watres.2014.10.044
Yuwei Liu , Yihui Zhu , Weijian Duan , Yizhuo Yang , Haorui Tuo , Chunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
Hong-Rui Li , Xia Kang , Rui Gao , Miao-Miao Shi , Bo Bi , Ze-Yu Chen , Jun-Min Yan . Interfacial interactions of Cu/MnOOH enhance ammonia synthesis from electrochemical nitrate reduction. Chinese Chemical Letters, 2025, 36(2): 109958-. doi: 10.1016/j.cclet.2024.109958
Junchen Peng , Zhongyuan Guo , Dandan Dong , Yusheng Lu , Bao Wang , Fangjie Lu , Chaofeng Huang , Bin Dai . Cu0/Cuδ+ site construction and its catalytic role in acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(8): 111208-. doi: 10.1016/j.cclet.2025.111208
Zekun Zhang , Shiji Li , Qian Zhang , Shanshan Li , Liu Yang , Wei Yan , Hao Xu . Further study of CO2 electrochemical reduction to gas products on Cu: Influence of the electrolyte. Chinese Chemical Letters, 2025, 36(9): 110742-. doi: 10.1016/j.cclet.2024.110742
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Doudou Liu , Weiwei Guo , Guoliang Mei , Youpeng Dan , Rong Yang , Chao Huang , Yanling Zhai , Xiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-0. doi: 10.3866/PKU.WHXB202404023
Tong Li , Leping Pan , Yan Zhang , Jihu Su , Kai Li , Kuiliang Li , Hu Chen , Qi Sun , Zhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897
Yuan ZHU , Xiaoda ZHANG , Shasha WANG , Peng WEI , Tao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232
Zhengzheng LIU , Pengyun ZHANG , Chengri WANG , Shengli HUANG , Guoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039
Xue Zhao , Mengshan Chen , Dan Wang , Haoran Zhang , Guangzhi Hu , Yingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Xueyang Zhao , Bangwei Deng , Hongtao Xie , Yizhao Li , Qingqing Ye , Fan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Tinghui Yang , Min Kuang , Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350
Xiaoxi Zhao , Qingyun Dou , Pei Tang , Bingjun Yang , Qunji Xue , Xingbin Yan . In-situ construction of solid electrolyte interphase for stable zinc anode via synergy of electrochemical reduction and chemical precipitation. Chinese Chemical Letters, 2025, 36(11): 110422-. doi: 10.1016/j.cclet.2024.110422
Qinyu Zhao , Yunchao Zhao , Songjing Zhong , Zhaoyang Yue , Zhuoheng Jiang , Shaobo Wang , Quanhong Hu , Shuncheng Yao , Kaikai Wen , Linlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644