Advancements in MXene-based nanohybrids for electrochemical water splitting
-
* Corresponding authors.
E-mail addresses: xianyunpeng@zju.edu.cn (X. Peng), yhou@zju.edu.cn (Y. Hou).
Citation:
Liwei Hou, Xianyun Peng, Siliu Lyu, Zhongjian Li, Bin Yang, Qinghua Zhang, Qinggang He, Lecheng Lei, Yang Hou. Advancements in MXene-based nanohybrids for electrochemical water splitting[J]. Chinese Chemical Letters,
;2025, 36(6): 110392.
doi:
10.1016/j.cclet.2024.110392
T.Y. Shuai, Q.N. Zhan, H.M. Xu, et al., Green Chem. 25 (2023) 1749–1789.
doi: 10.1039/d2gc04205c
K. Liu, H. Yang, Y. Jiang, et al., Nat. Commun. 14 (2023) 2424.
doi: 10.23919/ccc58697.2023.10240130
Y.J. Lei, Z.C. Yan, W.H. Lai, et al., Electrochem. Energy Rev. 3 (2020) 766–792.
doi: 10.1007/s41918-020-00079-y
H.T. Das, T.E. Balaji, S. Dutta, et al., Int. J. Energ. Res. 46 (2022) 8625–8656.
doi: 10.1002/er.7847
X. Bai, J. Guan, Chin. J. Catal. 43 (2022) 2057–2090.
doi: 10.1016/S1872-2067(21)64030-5
I. Dincer, C. Zamfirescu, Int. J. Hydrogen Energ. 37 (2012) 16266–16286.
doi: 10.1016/j.ijhydene.2012.02.133
S. Anantharaj, S. Noda, Small 16 (2019) 1905779.
M. Khan, A. Hussain, M.T. Saleh, et al., Coordin. Chem. Rev. 506 (2024) 215722.
doi: 10.1016/j.ccr.2024.215722
H. Liang, J. Liu, ChemCatChem 14 (2022) e202101375.
doi: 10.1002/cctc.202101375
B. You, M.T. Tang, C. Tsai, et al., Adv. Mater. 31 (2019) e1807001.
doi: 10.1002/adma.201807001
D. Guo, Q. Pan, T. Vietor, et al., J. Energ. Chem. 87 (2023) 518–539.
doi: 10.1016/j.jechem.2023.08.049
J. Ran, J. Zhang, J. Yu, et al., Chem. Soc. Rev. 43 (2014) 7787–7812.
doi: 10.1039/C3CS60425J
B. You, Y. Sun, Acc. Chem. Res. 51 (2018) 1571–1580.
doi: 10.1021/acs.accounts.8b00002
N. Danilovic, R. Subbaraman, K.C. Chang, et al., Angew. Chem. Int. Ed. 53 (2014) 14016–14021.
doi: 10.1002/anie.201406455
J. Yoon, J. Park, Y.J. Sa, et al., CrystEngComm 18 (2016) 6002–6007.
doi: 10.1039/C6CE00830E
L. Yang, M.B. Vukmirovic, D.K. Su, et al., J. Phys. Chem. C 117 (2013) 1748–1753.
doi: 10.1021/jp309990e
M.K. Debe, Nature, 486 (2012) 43–51.
doi: 10.1038/nature11115
H.A. Gasteiger, S.S. Kocha, B. Sompalli, et al., Appl. Catal. B: Environ. 56 (2005) 9–35.
doi: 10.1016/j.apcatb.2004.06.021
M. Khan, N. Shahzad, C. Xiong, et al., Diam. Relat. Mater. 61 (2016) 32–40.
doi: 10.1016/j.diamond.2015.11.007
M. Khan, A.A. Khurram, L. Tiehu, et al., Diam. Relat. Mater. 78 (2017) 58–66.
doi: 10.3390/electronics6030058
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, et al., Science 341 (2013) 1502–1505.
doi: 10.1126/science.1241488
M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248–4253.
doi: 10.1002/adma.201102306
Y. Tong, P. Chen, L. Chen, et al., ChemSusChem 14 (2021) 2576–2584.
doi: 10.1002/cssc.202100720
M. Naguib, J. Halim, J. Lu, et al., J. Am. Chem. Soc. 135 (2013) 15966–15969.
doi: 10.1021/ja405735d
X. Sang, Y. Xie, M.W. Lin, et al., ACS Nano 10 (2016) 9193–9200.
doi: 10.1021/acsnano.6b05240
Y. Gogotsi, B. Anasori, ACS Nano 13 (2019) 8491–8494.
doi: 10.1021/acsnano.9b06394
Y.J. Kim, S.J. Kim, D. Seo, et al., Chem. Mater. 33 (2021) 6346–6355.
doi: 10.1021/acs.chemmater.1c01263
A. Alarawi, V. Ramalingam, J.H. He, Mater. Today Chem. 11 (2019) 1–23.
doi: 10.1016/j.mtchem.2018.10.004
G.H. Jeong, S.P. Sasikala, T. Yun, et al., Adv. Mater. 32 (2020) 1907006.
doi: 10.1002/adma.201907006
X. Li, Z. Huang, C. Zhi, Front. Mater. 6 (2019) 312.
doi: 10.3389/fmats.2019.00312
T.Y. Shuai, Q.N. Zhan, H.M. Xu, et al., Chem. Commun. 59 (2023) 3968–3999.
doi: 10.1039/d2cc06418a
C.E. Shuck, Y. Gogotsi, Chem. Eng. J. 401 (2020) 125786.
doi: 10.1016/j.cej.2020.125786
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2 (2017) 16098.
doi: 10.1038/natrevmats.2016.98
B.M. Jun, S. Kim, J. Heo, et al., Nano Res. 12 (2018) 471–487.
Y. Sun, Y. Li, Chemosphere 271 (2021) 129578.1–129578.18.
doi: 10.1016/j.chemosphere.2021.129578
L. Chen, M. Wakeel, T. Ul Haq, et al., Environ. Sci. Nano 9 (2022) 3168–3205.
doi: 10.1039/d2en00340f
I. Ashraf, S. Ahmad, F. Nazir, et al., Int. J. Hydrogen Energ. 47 (2022) 27383–27396.
doi: 10.1016/j.ijhydene.2022.06.095
Y. Wu, W. Wei, R. Yu, et al., Adv. Funct. Mater. 32 (2022) 2110910.
doi: 10.1002/adfm.202110910
Y. Jiang, T. Sun, X. Xie, et al., ChemSusChem 12 (2019) 1368–1373.
doi: 10.1002/cssc.201803032
A. Patra, R. Samal, C.S. Rout, Catal. Today 424 (2023) 113853.
doi: 10.1016/j.cattod.2022.07.021
L.P. Hao, A. Hanan, R. Walvekar, et al., Catalysts 13 (2023) 802.
doi: 10.3390/catal13050802
Z. Lv, W. Ma, M. Wang, et al., Adv. Funct. Mater. 31 (2021) 2102576.
doi: 10.1002/adfm.202102576
A. Hanan, M.N. Lakhan, M.Y. Solangi, et al., Mater. Today Sustain. 24 (2023) 100585.
B. Zhang, J. Shan, X. Wang, et al., Small 18 (2022) e2200173.
doi: 10.1002/smll.202200173
Y. Xu, Z. Mao, J. Zhang, et al., Angew. Chem. Int. Ed. (63) (2024) e202316029.
A.Gilbert Prince, L. Durai, S. Badhulika, FlatChem 36 (2022) 100439.
doi: 10.1016/j.flatc.2022.100439
Y. Ye, X. Zeng, Y. Wang, et al., J. Adv. Ceram. 12 (2023) 553–564.
doi: 10.26599/JAC.2023.9220704
S.K. Raj, Kirti, V.Sharma, et al., Int. J. Hydrogen Energ. 48 (2023) 37732–37745.
doi: 10.1016/j.ijhydene.2022.11.093
K. Chaudhary, S. Zulfiqar, H.H. Somaily, et al., Electrochim. Acta. 431 (2022) 141103.
doi: 10.1016/j.electacta.2022.141103
M. Li, S. Zhou, R. Sun, et al., Fuel 358 (2024) 130256.
doi: 10.1016/j.fuel.2023.130256
X. Yu, L. Lin, C. Pei, et al., Chemistry (Easton) 30 (2023) e202303524.
X. Shi, M. Du, H.S. Jing, et al., Colloids Surf. A 679 (2023) 132638.
doi: 10.1016/j.colsurfa.2023.132638
M. Xu, J. Huang, X. Yue, et al., ACS Appl. Energ. Mater. 7 (2024) 2460–2468.
doi: 10.1021/acsaem.3c03270
N. Li, Y. Zhang, M. Jia, et al., Electrochimica. Acta. 326 (2019) 134976.
doi: 10.1016/j.electacta.2019.134976
X. Li, X. Lv, X. Sun, et al., App. Catal. B: Environ. 284 (2021) 19708.
doi: 10.1016/j.apcatb.2020.119708
C.F. Du, Q. Song, Q. Liang, et al., ChemNanoMat 7 (2021) 539–544.
doi: 10.1002/cnma.202100061
X. Zhao, W.P. Li, Y. Cao, et al., ACS Nano 18 (2024) 4256–4268.
doi: 10.1021/acsnano.3c09639
V. Ramalingam, P. Varadhan, H.C. Fu, et al., Adv. Mater. 31 (2019) e1903841.
doi: 10.1002/adma.201903841
S. Hussain, D. Vikraman, G. Nazir, et al., Nanomaterials 12 (2022) 2886.
doi: 10.3390/nano12162886
S. Han, Y. Chen, Y. Hao, et al., China Mater. 64 (2020) 1127–1138.
doi: 10.22251/jlcci.2020.20.20.1127
X. Peng, Y. Mi, X. Liu, et al., J. Mater. Chem. A 10 (2022) 6134–6145.
doi: 10.1039/d1ta07375c
X. Peng, H. Bao, J. Sun, et al., Nanoscale 13 (2021) 7134–7139.
doi: 10.1039/d1nr00795e
J. Zhang, E. Wang, S. Cui, et al., Nano Lett. 22 (2022) 1398–1405.
doi: 10.1021/acs.nanolett.1c04809
W. Lin, Y.R. Lu, W. Peng, et al., J. Mater. Chem. A 10 (2022) 9878–9885.
doi: 10.1039/d2ta00550f
A.Gilbert Prince, L. Durai, S. Badhulika, FlatChem 36 (2022) 100439.
doi: 10.1016/j.flatc.2022.100439
X. Zeng, Y. Ye, Y. Wang, et al., J. Adv. Ceram. 12 (2023) 553–564.
doi: 10.26599/jac.2023.9220704
Y. Cheng, J. Dai, Y. Song, et al., ACS App. Energ. Mater. 2 (2019) 6851–6859.
doi: 10.1021/acsaem.9b01329
X. Peng, S. Zhao, Y. Mi, et al., Small 16 (2020) e2002888.
doi: 10.1002/smll.202002888
C.G. Morales-Guio, L.A. Stern, X. Hu, Chem. Soc. Rev. 43 (2014) 6555–6569.
doi: 10.1039/C3CS60468C
Y. Yan, B.Y. Xia, B. Zhao, et al., J. Mater. Chem. A 4 (2016) 17587–17603.
doi: 10.1039/C6TA08075H
N.T. Suen, S.F. Hung, Q. Quan, et al., Chem. Soc. Rev. 46 (2017) 337–365.
doi: 10.1039/C6CS00328A
I.C. Man, H.-Y. Su, F. Calle-Vallejo, et al., ChemCatChem 3 (2011) 1159–1165.
doi: 10.1002/cctc.201000397
J. Zhang, H.B. Yang, D. Zhou, B. Liu, Chem. Rev. 122 (2022) 17028–17072.
doi: 10.1021/acs.chemrev.1c01003
C. Lei, S. Lyu, J. Si, et al., ChemCatChem 11 (2019) 5855–5874.
doi: 10.1002/cctc.201901707
M. Gao, F. Wang, S. Yang, et al., Mater. Today 72 (2024) 318–358.
doi: 10.1016/j.mattod.2023.12.009
X. Li, Z. Huang, C.E. Shuck, et al., Nat. Rev. Chem. 6 (2022) 389–404.
doi: 10.1038/s41570-022-00384-8
J. Björk, J. Halim, J. Zhou, et al., npj 2D Mater. Appl. 7 (2023) 5.
doi: 10.1038/s41699-023-00370-8
Y. Wei, P. Zhang, R.A. Soomro, et al., Adv. Mater. 33 (2021) e2103148.
doi: 10.1002/adma.202103148
M. Han, K. Maleski, C.E. Shuck, et al., J. Am. Chem. Soc. 142 (2020) 19110–19118.
doi: 10.1021/jacs.0c07395
B. Anasori, Y. Xie, M. Beidaghi, et al., ACS Nano 9 (2015) 9507–9516.
doi: 10.1021/acsnano.5b03591
Q. Tao, M. Dahlqvist, J. Lu, et al., Nat. Commun. 8 (2017) 14949.
doi: 10.1038/ncomms14949
M. Shekhirev, C.E. Shuck, A. Sarycheva, et al., Prog. Mater. Sci. 120 (2021) 100757.
doi: 10.1016/j.pmatsci.2020.100757
V. Kamysbayev, A.S. Filatov, H. Hu, et al., Science 369 (2020) 979–983.
doi: 10.1126/science.aba8311
Y. Li, H. Shao, Z. Lin, et al., Nat. Mater. 19 (2020) 894–899.
doi: 10.1038/s41563-020-0657-0
S.G. Peera, R. Koutavarapu, L. Chao, et al., Micromachines (Basel) 13 (2022) 1499.
doi: 10.3390/mi13091499
R. Verma, A. Sharma, V. Dutta, et al., Emergent Mater. 7 (2023) 35–62.
doi: 10.4018/978-1-6684-8893-5.ch003
Z. Kang, M.A. Khan, Y. Gong, et al., J. Mater. Chem. A 9 (2021) 6089–6108.
doi: 10.1039/d0ta11735h
R.R. Raja Sulaiman, A. Hanan, W.Y. Wong, et al., Catalysts 12 (2022) 1576.
doi: 10.3390/catal12121576
Y. Wen, Z. Wei, C. Ma, et al., Nanomaterials 9 (2019) 775.
doi: 10.3390/nano9050775
Y. Jiang, X. Wu, Y. Yan, et al., Small, 15 (2019) 1805474.
doi: 10.1002/smll.201805474
L. Zhang, D. Ye, Q.A. Huang, et al., J. Electrochem. Soc. 167 (2020) 1–14.
Y. Zheng, Y. Liu, X. Guo, et al., J. Mater. Sci. Technol. 41 (2020) 117–126.
doi: 10.1016/j.jmst.2019.09.018
V. Ramalingam, P. Varadhan, H.C. Fu, et al., Adv. Mater. 31 (2019) 1903841.
doi: 10.1002/adma.201903841
B. Abdollahi, A. Najafidoust, E.Abbasi Asl, et al., Arabian J. Chem. 14 (2021) 103444.
doi: 10.1016/j.arabjc.2021.103444
A. Hanan, M.N. Lakhan, M.Y. Solangi, et al., Mater. Today Sustain. 24 (2023) 100585.
Y. Yang, X. Huang, C. Sheng, et al., J. Alloys Compd. 920 (2022) 165908.
doi: 10.1016/j.jallcom.2022.165908
Y. Tang, C. Yang, M. Sheng, et al., ACS Sustain. Chem. Eng. 8 (2020) 12990–12998.
doi: 10.1021/acssuschemeng.0c03840
C.F. Du, X. Sun, H. Yu, et al., Adv. Sci. 6 (2019) 1900116.
doi: 10.1002/advs.201900116
K. Wang, H. Du, S. He, et al., Adv. Mater. 33 (2021) 2005587.
doi: 10.1002/adma.202005587
X. Zheng, X. Han, Y. Cao, et al., Adv. Mater. 32 (2020) 2000607.
doi: 10.1002/adma.202000607
J. Li, C. Chen, Z. Lv, et al., J. Mater. Sci. Technol. 145 (2023) 74–82.
doi: 10.1117/12.2649479
S. Zhao, Y. Wang, J. Dong, et al., Nat. Energ. 1 (2016) 16184.
doi: 10.1038/nenergy.2016.184
M.S. Burke, M.G. Kast, L. Trotochaud, et al., J. Am. Chem. Soc. 137 (2015) 3638–3648.
doi: 10.1021/jacs.5b00281
Y. Pan, R. Lin, Y. Chen, et al., J. Am. Chem. Soc. 140 (2018) 4218–4221.
doi: 10.1021/jacs.8b00814
L. Cao, Q. Luo, W. Liu, et al., Nat. Catal. 2 (2019) 134–141.
Z. Chen, X. Fan, Z. Shen, et al., ChemCatChem 12 (2020) 4059–4066.
doi: 10.1002/cctc.202000591
Z. Fu, G. Hai, X.X. Ma, et al., J. Energ. Chem. 98 (2024) 663–669.
doi: 10.1016/j.jechem.2024.07.014
H. Su, S. Song, S. Li, et al., App. Catal. B: Environ. 293 (2021) 120225.
doi: 10.1016/j.apcatb.2021.120225
L. Zhang, Y. Jia, G. Gao, et al., Chem 4 (2018) 285–297.
doi: 10.1016/j.chempr.2017.12.005
X. Zhao, X. Zheng, Q. Lu, et al., EcoMat 5 (2023) e12293.
doi: 10.1002/eom2.12293
Ping Wang , Ting Wang , Ming Xu , Ze Gao , Hongyu Li , Bowen Li , Yuqi Wang , Chaoqun Qu , Ming Feng . Keplerate polyoxomolybdate nanoball mediated controllable preparation of metal-doped molybdenum disulfide for electrocatalytic hydrogen evolution in acidic and alkaline media. Chinese Chemical Letters, 2024, 35(7): 108930-. doi: 10.1016/j.cclet.2023.108930
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Yi Zhang , Biao Wang , Chao Hu , Muhammad Humayun , Yaping Huang , Yulin Cao , Mosaad Negem , Yigang Ding , Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Shuai Liu , Wen Wu , Peili Zhang , Yunxuan Ding , Chang Liu , Yu Shan , Ke Fan , Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535
Yukang Xiong , Lin Lv , Guokun Ma , Hanbin Wang , Houzhao Wan , Hao Wang . Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery. Chinese Journal of Structural Chemistry, 2025, 44(11): 100699-100699. doi: 10.1016/j.cjsc.2025.100699
Cui Luo , Peng-Hui Li , Wei-Ming Liao , Qia-Chun Lin , Xiao-Xiang Zhou , Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
Junan Pan , Xinyi Liu , Huachao Ji , Yanwei Zhu , Yanling Zhuang , Kang Chen , Ning Sun , Yongqi Liu , Yunchao Lei , Kun Wang , Bao Zang , Longlu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515
Weibin Shen , Jie Liu , Gongyu Wen , Shuai Li , Binhui Yu , Shuangyu Song , Bojie Gong , Rongyang Zhang , Shibao Liu , Hongpeng Wang , Yao Wang , Yujing Liu , Huadong Yuan , Jianming Luo , Shihui Zou , Xinyong Tao , Jianwei Nai . Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(7): 110184-. doi: 10.1016/j.cclet.2024.110184
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Qing Li , Bing Wang , Qi Xu , Ruiyou Liu , Chen Li , Fang Luo , Yifei Li , Yingjie Yu , Zehui Yang . Pt dopants in ruthenium/iridium oxides promote catalytic activity in overall acidic water splitting. Chinese Chemical Letters, 2025, 36(12): 111658-. doi: 10.1016/j.cclet.2025.111658
Gen Zhang , Ying Gu , Lin Li , Fuli Ma , Dan Yue , Xiaoguang Zhou , Chungui Tian . Anion-modulated HER and OER activity of 1D Co-Mo based interstitial compound heterojunctions for the effective overall water splitting. Chinese Chemical Letters, 2025, 36(7): 110110-. doi: 10.1016/j.cclet.2024.110110
Rui Deng , Wenjie Jiang , Tianqi Yu , Jiali Lu , Boyao Feng , Panagiotis Tsiakaras , Shibin Yin . Cycad-leaf-like crystalline-amorphous heterostructures for efficient urea oxidation-assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(7): 100290-100290. doi: 10.1016/j.cjsc.2024.100290
Wenjie Jiang , Zhixiang Zhai , Xiaoyan Zhuo , Jia Wu , Boyao Feng , Tianqi Yu , Huan Wen , Shibin Yin . Revealing the reactant adsorption role of high-valence WO3 for boosting urea-assisted water splitting. Chinese Journal of Structural Chemistry, 2025, 44(3): 100519-100519. doi: 10.1016/j.cjsc.2025.100519
Xiangyang Zou , Ping Guo , Yuanyuan Zhang , Feng Gao , Ping Xu . Magnetic field enhanced electrocatalytic oxygen evolution of CoFe2O4 with tunable oxygen vacancy concentrations. Chinese Chemical Letters, 2026, 37(1): 111659-. doi: 10.1016/j.cclet.2025.111659