2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction
-
* Corresponding authors.
E-mail addresses: hanbin@ustb.edu.cn (B. Han), jianzhuang@ustb.edu.cn (J. Jiang).
Citation:
Qi Zhang, Bin Han, Yucheng Jin, Mingrun Li, Enhui Zhang, Jianzhuang Jiang. 2D and 3D phthalocyanine covalent organic frameworks for electrocatalytic carbon dioxide reduction[J]. Chinese Chemical Letters,
;2025, 36(9): 110330.
doi:
10.1016/j.cclet.2024.110330
C. Ding, Y. Du, S. Agarwal, et al., Adv. Funct. Mater. 34 (2024) 2309938.
J. Pérez-Carvajal, G. Boix, I. Imaz, et al., Adv. Energy Mater. 9 (2019) 1901535.
C. Kang, Z. Zhang, A.K. Usadi, et al., J. Am. Chem. Soc. 144 (2022) 20363–20371.
doi: 10.1021/jacs.2c08214
J. Li, Y. He, Y. Zou, et al., Chin. Chem. Lett. 33 (2022) 3017–3020.
S. Wang, Y. Yang, X. Liang, et al., Adv. Funct. Mater. 33 (2023) 2300386.
D.W. Burke, Z. Jiang, A.G. Livingston, et al., Adv. Mater. 36 (2024) 2300525.
H. Yang, L. Yang, H. Wang, et al., Nat. Commun. 10 (2019) 2101–2110.
L. Liang, F. Qin, S. Wang, et al., Coord. Chem. Rev. 478 (2023) 214998.
M. Liu, Y.J. Chen, D.X. Huang, et al., Angew. Chem. Int. Ed. 61 (2022) e202115308.
M. Zheng, K.A. Mirica, Chem. Soc. Rev. 50 (2021) 13498–13558.
A. Zadehnazari, A. Khosropour, A. Altaf, et al., Adv. Mater. 36 (2024) 2311042.
T. He, Z. Zhao, R. Liu, et al., J. Am. Chem. Soc. 145 (2023) 6057–6066.
doi: 10.1021/jacs.2c10233
C. Wang, Z. Lv, W. Yang, et al., Chem. Soc. Rev. 52 (2023) 1382–1427.
doi: 10.1039/d2cs00843b
Y. Jin, X. Zhan, Y. Zheng, et al., Appl. Catal. B: Environ. 327 (2023) 122446.
B. Han, X. Ding, B. Yu, et al., J. Am. Chem. Soc. 143 (2021) 7104–7113.
doi: 10.1021/jacs.1c02145
S. Gao, B. Fan, R. Feng, et al., Nano Energy. 40 (2017) 462–470.
Q. Zhi, W. Liu, R. Jiang, et al., J. Am. Chem. Soc. 144 (2022) 21328–21336.
doi: 10.1021/jacs.2c09482
W.K. Haug, E.M. Moscarello, E.R. Wolfson, et al., Chem. Soc. Rev. 49 (2020) 839–864.
doi: 10.1039/c9cs00807a
X. Ren, G. Liao, Z. Li, et al., Coord. Chem. Rev. 435 (2021) 213781.
X. Yang, L. Gong, X. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202207043.
N. Li, C. Pan, G. Lu, et al., Adv. Mater. 36 (2024) 2311023.
Q. Guan, L.L. Zhou, Y.B. Dong, et al., Chem. Soc. Rev. 51 (2022) 6307–6416.
doi: 10.1039/d1cs00983d
K. Geng, T. He, R. Liu, et al., Chem. Rev. 120 (2020) 8814–8933.
doi: 10.1021/acs.chemrev.9b00550
F. Haase, B.V. Lotsch, Coord. Chem. Soc. Rev. 49 (2020) 8469–8500.
doi: 10.1039/d0cs01027h
X. Guan, F. Chen, Q. Fang, et al., Chem. Soc. Rev. 49 (2020) 1357–1384.
doi: 10.1039/c9cs00911f
S. Wang, X.X. Li, L. Da, et al., J. Am. Chem. Soc. 143 (2021) 15562–15566.
doi: 10.1021/jacs.1c06986
H. Li, J. Ding, X. Guan, et al., J. Am. Chem. Soc. 142 (2020) 13334–13338.
doi: 10.1021/jacs.0c06485
Y. Yang, C. Schäfer, K. Börjesson, Chem. 8 (2022) 2217–2227.
Z. Li, L. Sheng, H. Wang, et al., J. Am. Chem. Soc. 143 (2021) 92–96.
X. Xu, P. Cai, H. Chen, et al., J. Am. Chem. Soc. 144 (2022) 18511–18517.
doi: 10.1021/jacs.2c07733
S. Xue, X. Ma, Y. Wang, et al., Coord. Chem. Rev. 504 (2024) 215659.
W. Gao, S. Liang, R. Wang, et al., Chem. Soc. Rev. 49 (2020) 8584–8686.
doi: 10.1039/d0cs00025f
R. Osbourne, BMJ. 379 (2022) o2414.
M.I. Hoffert, Science 329 (2010) 1292–1294.
doi: 10.1126/science.1195449
P. Voosen, Science 366 (2019) 170–175.
doi: 10.1126/science.366.6462.170
A. Ozden, J. Li, S. Kandambeth, et al., Nat. Energy 8 (2023) 179–190.
doi: 10.1038/s41560-022-01188-2
Y. Wang, T. Zheng T. Sun et al., ACS Mater. Lett. 6 (2024) 140–152.
T. Zheng, X. Ding, T. Sun, et al., Small 20 (2023) 2307743.
X. Wang, X. Ding, Y. Jin, et al., Angew. Chem. Int. Ed. 62 (2023) e202302808.
Z. Liu, K. Wang, Y. Chen, T. Tan, et al., Nat. Catal. 3 (2020) 274–288.
doi: 10.1038/s41929-019-0421-5
Y.L. Yang, Y.R. Wang, G.K. Gao, et al., Chin. Chem. Lett. 33 (2022) 1439–1444.
doi: 10.3390/nano12091439
J. Zhang, Y. Wang, H. Wang, et al., Chin. Chem. Lett. 33 (2022) 2065–2068.
S.G. Han, M. Zhang, Z.H. Fu, et al., Adv. Mater. 34 (2022) 2202830.
Z. Liang, H.Y. Wang, H. Zheng, et al., Chem. Soc. Rev. 50 (2021) 2540–2581.
doi: 10.1039/d0cs01482f
N. Li, D.H. Si, Q. j. Wu, et al., CCS Chem. 5 (2022) 1130–1143.
doi: 10.3390/mi13071130
Q.J. Wu, D.H. Si, Q. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202215687.
Q.X. Li, D.H. Si, W. Lin, et al., Sci. China. Chem. 65 (2022) 1584–1593.
doi: 10.1007/s11426-022-1263-5
W. Lai, Y. Qiao, Y. Wang, et al., Adv. Mater. 35 (2023) 2306288.
Q. Li, D.D. Ma, W.B. Wei, et al., Adv. Eng. Mater. 14 (2024) 2401314.
R. Sahoo, S. Mondal, S.C. Pal, et al., Adv. Eng. Mater. 11 (2021) 2102300.
S. Haldar, D. Rase, P. Shekhar, et al., Adv. Eng. Mater. 12 (2022) 2200754.
C.Y. Lin, L. Zhang, Z. Z, et al., Adv. Mater. 29 (2017) 1606635.
C. Jain, R. Kushwaha, D. Rase, et al., J. Am. Chem. Soc. 146 (2024) 487–499.
doi: 10.1021/jacs.3c09937
D.D. Ma, S.G. Han, S.H. Zhou, et al., CCS Chem. 5 (2023) 1827–1840.
doi: 10.31635/ccschem.022.202202294
M. Lu, M. Zhang, C.G. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 4864–4871.
doi: 10.1002/anie.202011722
Z. Lei, F.W.S. Lucas, E.C. Moya, et al., Chin. Chem. Lett. 32 (2021) 3799–3802.
B. Han, Y. Jin, B. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202114244.
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Chen Lu , Zefeng Yu , Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shouchao Zhong , Yue Wang , Mingshu Xie , Yiqian Wu , Jiuqiang Li , Jing Peng , Liyong Yuan , Maolin Zhai , Weiqun Shi . Radiation reduction modification of sp2 carbon-conjugated covalent organic frameworks for enhanced photocatalytic chromium(VI) removal. Chinese Chemical Letters, 2025, 36(5): 110312-. doi: 10.1016/j.cclet.2024.110312
Li-Ying Wang , Jun-Jie Yu , Shuai Wang , Yang Liu , Ke-Xian Song , Ji-Pan Yu , Li-Yong Yuan , Zhi-Rong Liu , Wei-Qun Shi . Pyridine-based ionic sp2 carbon-conjugated covalent organic frameworks for selective extraction of Pu(Ⅳ) from high-level liquid waste. Chinese Chemical Letters, 2025, 36(8): 110706-. doi: 10.1016/j.cclet.2024.110706
Xinyu Wu , Jianfeng Lu , Zihao Zhu , Suijun Liu , Herui Wen . Recent advances of metal-organic frameworks and MOF-derived materials based on p-block metal for the electrochemical reduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(7): 110151-. doi: 10.1016/j.cclet.2024.110151
Wei Su , Xiaoyan Luo , Peiyuan Li , Ying Zhang , Chenxiang Lin , Kang Wang , Jianzhuang Jiang . Phthalocyanine self-assembled nanoparticles for type Ⅰ photodynamic antibacterial therapy. Chinese Chemical Letters, 2024, 35(12): 109522-. doi: 10.1016/j.cclet.2024.109522
Wei-Jia Wang , Kaihong Chen . Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide. Chinese Chemical Letters, 2025, 36(1): 109998-. doi: 10.1016/j.cclet.2024.109998
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Chao Liu , Chao Jia , Shi-Xian Gan , Qiao-Yan Qi , Guo-Fang Jiang , Xin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750
Lulu He , Le Wang , Zhen He , Yiqian Yang , Cheng Heng Pang , Aiguo Wu , Bencan Tang , Juan Li . An imine-linked covalent organic framework with intrinsic photo-induced mitochondrial regulation for breast cancer therapy. Chinese Chemical Letters, 2025, 36(9): 110717-. doi: 10.1016/j.cclet.2024.110717
Peng Gao , Yuanyuan Chen , Qianlin He , Xue Liu , Echuan Tan , Zhiqiang Yu , Hui Wang . Highly efficient adoptive cell therapy of metastatic triple negative breast cancer with bioactive covalent organic framework-engineered macrophages. Chinese Chemical Letters, 2025, 36(8): 110585-. doi: 10.1016/j.cclet.2024.110585
Yunyu Zhao , Chuntao Yang , Yingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201
Yue Zhang , Xiaoya Fan , Xun He , Tingyu Yan , Yongchao Yao , Dongdong Zheng , Jingxiang Zhao , Qinghai Cai , Qian Liu , Luming Li , Wei Chu , Shengjun Sun , Xuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806