Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects
-
* Corresponding authors.
E-mail addresses: xyhuang@sjtu.edu.cn (X. Huang), hpxu@sspu.edu.cn (H. Xu).
Citation:
Hongfei Li, Hao Chen, Qi Kang, Lihe Guo, Xingyi Huang, Haiping Xu. Gel polymer electrolyte for flexible and stretchable lithium metal battery: Advances and prospects[J]. Chinese Chemical Letters,
;2025, 36(9): 110325.
doi:
10.1016/j.cclet.2024.110325
J.A. Rogers, T. Someya, Y. Huang, Science 327 (2010) 1603–1607.
doi: 10.1126/science.1182383
L.A. Bove, J. Nurse. Pract. 15 (2019) 535–539.
doi: 10.1016/j.nurpra.2019.03.018
Y. Khan, A.E. Ostfeld, C.M. Lochner, et al., Adv. Mater. 28 (2016) 4373–4395.
doi: 10.1002/adma.201504366
D.H. Kim, N. Lu, R. Ma, et al., Science 333 (2011) 838–843.
doi: 10.1126/science.1206157
D.G. Mackanic, M. Kao, Z. Bao, Adv. Energy Mater. 10 (2020) 2001424.
doi: 10.1002/aenm.202001424
Z. Bao, X. Chen, Adv. Mater. 28 (2016) 4177–4179.
doi: 10.1002/adma.201601422
Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano 11 (2017) 9614–9635.
doi: 10.1021/acsnano.7b04898
S. Zhang, T. Liang, D. Wang, et al., Adv. Sci. 8 (2021) 2003241.
doi: 10.1002/advs.202003241
H. Qin, Y. Yan, Q. Feng, et al., Nano Lett. 22 (2022) 8101–8108.
doi: 10.1021/acs.nanolett.2c02446
X. Gong, Q. Yang, C. Zhi, P.S. Lee, Adv. Energy Mater. 11 (2021) 2003308.
doi: 10.1002/aenm.202003308
M. Nasreldin, S. Mulatier, R. Delattre, et al., Adv. Mater. Technol. 5 (2020) 2000412.
doi: 10.1002/admt.202000412
X. Wang, X. Lu, B. Liu, et al., Adv. Mater. 26 (2014) 4763–4782.
doi: 10.1002/adma.201400910
J. Chang, Q. Huang, Z. Zheng, Joule 4 (2020) 1346–1349.
doi: 10.1016/j.joule.2020.05.015
Y. Zhang, Y. Zhao, J. Ren, et al., Adv. Mater. 28 (2016) 4524–4531.
doi: 10.1002/adma.201503891
D. Chen, Z. Lou, K. Jiang, G. Shen, Adv. Funct. Mater. 28 (2018) 1805596.
doi: 10.1002/adfm.201805596
K. Fu, J. Cheng, T. Li, L. Hu, ACS Energy Lett. 1 (2016) 1065–1079.
doi: 10.1021/acsenergylett.6b00401
W. Liu, M. Song, B. Kong, Y. Cui, Adv. Mater. 29 (2017) 1603436.
doi: 10.1002/adma.201603436
W. Liu, J. Chen, Z. Chen, et al., Adv. Energy Mater. 7 (2017) 1701076.
doi: 10.1002/aenm.201701076
D.G. Mackanic, T. Chang, Z. Huang, et al., Chem. Soc. Rev. 49 (2020) 4466–4495.
doi: 10.1039/d0cs00035c
L. Chen, J. Zhou, Y. Wang, et al., Adv. Energy Mater. 13 (2023) 2202933.
doi: 10.1002/aenm.202202933
T. Tao, S. Lu, Y. Chen, Adv. Mater. Technol. 3 (2018) 1700375.
doi: 10.1002/admt.201700375
G. Qian, X. Liao, Y. Zhu, et al., ACS Energy Lett. 4 (2019) 690–701.
doi: 10.1021/acsenergylett.8b02496
Q. Tu, L. Fan, F. Pan, et al., Electrochim. Acta 268 (2018) 562–568.
doi: 10.1016/j.electacta.2018.02.008
X. Cao, D. Tan, Q. Guo, et al., J. Mater. Chem. A 10 (2022) 11562–11573.
doi: 10.1039/d2ta00425a
H. Peng, J. Huang, Q. Zhang, Chem. Soc. Rev. 46 (2017) 5237–5288.
doi: 10.1039/C7CS00139H
Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605–5634.
doi: 10.1039/C5CS00410A
Y. Yin, S. Xin, Y. Guo, L. Wan, Angew. Chem. Int. Ed. 52 (2013) 13186–13200.
doi: 10.1002/anie.201304762
M.J. Lee, J. Han, K. Lee, et al., Nature 601 (2022) 217–222.
doi: 10.1038/s41586-021-04209-4
L. Ye, X. Li, Nature 593 (2021) 218–222.
doi: 10.1038/s41586-021-03486-3
P. Xu, F. Huang, Y. Sun, et al., Adv. Funct. Mater. 34 (2024) 2406080.
doi: 10.1002/adfm.202406080
S. Chai, Y. Zhong, Y. Wang, et al., Adv. Energy Mater. 14 (2024) 2303020.
doi: 10.1002/aenm.202303020
J.H. Shin, W.A. Henderson, S. Passerini, Electrochem. Commun. 5 (2003) 1016–1020.
doi: 10.1016/j.elecom.2003.09.017
W. Cao, J. Zheng, J. Power Sources 213 (2012) 180–185.
doi: 10.1016/j.jpowsour.2012.04.033
W. Ren, Y. Zheng, Z. Cui, et al., Energy Storage Mater. 35 (2021) 157–168.
doi: 10.1016/j.ensm.2020.11.019
J. Liu, Z. Bao, Y. Cui, et al., Nat. Energy 4 (2019) 180–186.
doi: 10.1038/s41560-019-0338-x
F. Liu, W. Wang, Y. Yin, et al., Sci. Adv. 4 (2018) eaat5383.
doi: 10.1126/sciadv.aat5383
D. Zhou, D. Shanmukaraj, A. Tkacheva, et al., Chem. 5 (2019) 2326–2352.
doi: 10.1016/j.chempr.2019.05.009
J. Li, M. Zhou, H. Wu, et al., Adv. Energy Mater. 14 (2024) 2304480.
doi: 10.1002/aenm.202304480
T. Ye, L. Li, Y. Zhang, Adv. Funct. Mater. 30 (2020) 2000077.
doi: 10.1002/adfm.202000077
S. Li, S. Zhang, L. Shen, et al., Adv. Sci. 7 (2020) 1903088.
doi: 10.1002/advs.201903088
X. Fan, C. Zhong, J. Liu, et al., Chem. Rev. 122 (2022) 17155–17239.
doi: 10.1021/acs.chemrev.2c00196
A. Manthiram, X. Yu, S. Wang, Nat. Rev. Mater. 2 (2017) 16103.
doi: 10.1038/natrevmats.2016.103
X. Tong, Z. Tian, J. Sun, et al., Mater. Today 44 (2021) 78–104.
doi: 10.1016/j.mattod.2020.10.026
D. Yang, L. He, Y. Liu, et al., J. Mater. Chem. A 7 (2019) 13679–13686.
doi: 10.1039/c9ta03123e
Y. Zhu, S. Xiao, Y. Shi, et al., Adv. Energy Mater. 4 (2014) 1300647.
doi: 10.1002/aenm.201300647
J. Gou, Z. Zhang, S. Wang, et al., Adv. Mater. 36 (2024) 2309677.
doi: 10.1002/adma.202309677
M. Zhu, J. Wu, Y. Wang, et al., J. Energy Chem. 37 (2019) 126–142.
doi: 10.3901/jme.2019.04.126
S. Alipoori, S. Mazinani, S.H. Aboutalebi, et al., J. Energy Storage 27 (2020) 101072.
doi: 10.1016/j.est.2019.101072
X. Jin, G. Sun, G. Zhang, et al., Nano Res. 12 (2019) 1199–1206.
doi: 10.1007/s12274-019-2382-z
W. Wei, Z. Wu, M. Huang, et al., Soft Matter 13 (2017) 2583–2589.
doi: 10.1039/C7SM00349H
X. Zhang, S. Wang, C. Xue, et al., Adv. Mater. 31 (2019) e1806082.
doi: 10.1002/adma.201806082
S. Xiao, Y. Yang, M. Li, et al., J. Power Sources 270 (2014) 53–58.
doi: 10.1016/j.jpowsour.2014.07.058
H. Li, H. Zhang, X. Liao, et al., Polym. Chem. 11 (2020) 3322–3331.
doi: 10.1039/d0py00109k
J. Li, Y. Cai, H. Wu, et al., Adv. Energy Mater. 11 (2021) 2003239.
doi: 10.1002/aenm.202003239
X. Cheng, J. Pan, Y. Zhao, et al., Adv. Energy Mater. 8 (2018) 1702184.
doi: 10.1002/aenm.201702184
M. Shin, W. Song, H.B. Son, et al., Adv. Energy Mater. 8 (2018) 1801025.
doi: 10.1002/aenm.201801025
S.B. Aziz, R.T. Abdulwahid, M.A. Brza, et al., J. Energy Storage 71 (2023) 108175.
doi: 10.1016/j.est.2023.108175
X. Song, Y. Zhang, Y. Ye, et al., ACS Appl. Energy Mater. 3 (2020) 4906–4913.
doi: 10.1021/acsaem.0c00485
L. Fu, H. Liu, C. Li, et al., Prog. Mater. Sci. 50 (2005) 881–928.
doi: 10.1016/j.pmatsci.2005.04.002
D. Wang, J. Yu, G. Duan, et al., J. Mater. Sci. 55 (2020) 5667–5679.
doi: 10.1007/s10853-020-04402-2
Z. Lai, Y. Chen, C. Tan, et al., Chem. 1 (2016) 59–77.
doi: 10.1016/j.chempr.2016.06.011
X. Guan, Q. Wu, X. Zhang, et al., Chem. Eng. J. 382 (2020) 122935.
doi: 10.1016/j.cej.2019.122935
Q. Kang, Y. Li, Z. Zhuang, et al., J. Energy Chem. 69 (2022) 194–204.
doi: 10.1016/j.jechem.2022.01.008
D. Lei, Y. He, H. Huang, et al., Nat. Commun. 10 (2019) 4244.
doi: 10.1038/s41467-019-11960-w
D.J. Yoo, A. Elabd, S. Choi, et al., Adv. Mater. 31 (2019) e1901645.
doi: 10.1002/adma.201901645
X. Meng, Y. Liu, Z. Wang, et al., Energy Environ. Sci. 14 (2021) 2278–2290.
doi: 10.1039/d0ee03037f
A.C.M. Moraes, W.J. Hyun, N.S. Luu, et al., ACS Appl. Mater. Interfaces 12 (2020) 8107–8114.
doi: 10.1021/acsami.9b18134
F. Croce, G.B. Appetecchi, L. Persi, et al., Nature 394 (1998) 456–458.
doi: 10.1038/28818
Y. Zhu, J. Cao, H. Chen, et al., J. Mater. Chem. A 7 (2019) 6832–6839.
doi: 10.1039/c9ta00560a
D. Guo, D.B. Shinde, W. Shin, et al., Adv. Mater. 34 (2022) 2201410.
doi: 10.1002/adma.202201410
V. Vijayakumar, B. Anothumakkool, S. Kurungot, et al., Energy Environ. Sci. 14 (2021) 2708–2788.
doi: 10.1039/d0ee03527k
F. Pei, S. Dai, B. Guo, et al., Energy Environ. Sci. 14 (2021) 975–985.
doi: 10.1039/d0ee03005h
J. Chen, X. Huang, Y. Zhu, et al., Adv. Funct. Mater. 27 (2017) 1604754.
doi: 10.1002/adfm.201604754
Q. Li, L. Chen, M.R. Gadinski, et al., Nature 523 (2015) 576–579.
doi: 10.1038/nature14647
Y. Zhu, Y. Zhu, X. Huang, et al., Adv. Energy Mater. 9 (2019) 1901826.
doi: 10.1002/aenm.201901826
J. Sheng, Q. Zhang, M. Liu, et al., Nano Lett. 21 (2021) 8447–8454.
doi: 10.1021/acs.nanolett.1c03106
S. Zhou, Y. Xu, J. Tang, et al., J. Mater. Chem. A 10 (2022) 14336–14344.
doi: 10.1039/d2ta02968e
J. Shim, H.J. Kim, B.G. Kim, et al., Energy Environ. Sci. 10 (2017) 1911–1916.
doi: 10.1039/C7EE01095H
F. Liu, N.A. Hashim, Y. Liu, et al., J. Membrane Sci. 375 (2011) 1–27.
doi: 10.1016/j.memsci.2011.03.014
B. Liu, Y. Huang, L. Zhao, et al., J. Membrane Sci. 564 (2018) 62–72.
doi: 10.1016/j.memsci.2018.07.014
L. Zhao, Y. Huang, B. Liu, et al., Electrochim. Acta 278 (2018) 1–12.
doi: 10.1016/j.electacta.2018.05.012
Q. Yang, N. Deng, J. Chen, et al., Chem. Eng. J. 413 (2021) 127427.
doi: 10.1016/j.cej.2020.127427
Z. Huang, Y. Chen, Q. Han, et al., Chem. Eng. J. 429 (2022) 132429.
doi: 10.1016/j.cej.2021.132429
P.V. Wright, Electrochim. Acta 43 (1998) 1137–1143.
doi: 10.1016/S0013-4686(97)10011-1
J. Zhou, H. Ji, J. Liu, et al., Energy Storage Mater. 22 (2019) 256–264.
doi: 10.1016/j.ensm.2019.01.024
P. Martins, A.C. Lopes, S.L. Mendez, Prog. Polym. Sci. 39 (2014) 683–706.
doi: 10.1016/j.progpolymsci.2013.07.006
M. Zhang, M. Li, Z. Chang, et al., Electrochim. Acta 245 (2017) 752–759.
doi: 10.1016/j.electacta.2017.05.154
G. Chen, F. Zhang, Z. Zhou, et al., Adv. Energy Mater. 8 (2018) 1801219.
doi: 10.1002/aenm.201801219
D. Danninger, F. Hartmann, W. Paschinger, et al., Adv. Energy Mater. 10 (2020) 2000467.
doi: 10.1002/aenm.202000467
S. Li, W. Ren, Y. Huang, et al., Electrochim. Acta 391 (2021) 138950.
doi: 10.1016/j.electacta.2021.138950
B. Zhou, Y. Zhou, L. Lai, et al., ACS Appl. Energy Mater. 4 (2021) 9582–9593.
doi: 10.1021/acsaem.1c01724
C. Zhao, B. Zhao, C. Yan, et al., Energy Storage Mater. 24 (2020) 75–84.
doi: 10.1016/j.ensm.2019.07.026
H. Duan, Y. Yin, X. Zeng, et al., Energy Storage Mater. 10 (2018) 85–91.
doi: 10.1016/j.ensm.2017.06.017
B. Huang, Y. Zhang, M. Que, et al., RSC Adv. 7 (2017) 54391–54398.
doi: 10.1039/C7RA10268B
Y. Cui, J. Chai, H. Du, et al., ACS Appl. Mater. Interfaces 9 (2017) 8737–8741.
doi: 10.1021/acsami.6b16218
D. Luo, L. Zheng, Z. Zhang, et al., Nat. Commun. 12 (2021) 186.
doi: 10.1038/s41467-020-20339-1
Z. Shen, J. Zhong, J. Chen, et al., Chinese Chem. Lett. 34 (2023) 107370.
doi: 10.1016/j.cclet.2022.03.093
J. Yu, X. Lin, J. Liu, et al., Adv. Energy Mater. 12 (2022) 2102932.
doi: 10.1002/aenm.202102932
M. Liu, D. Zhou, Y. He, et al., Nano Energy 22 (2016) 278–289.
doi: 10.1016/j.nanoen.2016.02.008
Q. Liu, B. Cai, S. Li, et al., J. Mater. Chem. A 8 (2020) 7197–7204.
doi: 10.1039/d0ta02148b
W. Fan, N.W. Li, X. Zhang, et al., Adv. Sci. 5 (2018) 1800559.
doi: 10.1002/advs.201800559
L. Hu, X. Yan, T. Yang, et al., J. Energy Storage 66 (2023) 107368.
doi: 10.1016/j.est.2023.107368
M. Egashira, H. Todo, N. Yoshimoto, et al., J. Power Sources 178 (2008) 729–735.
doi: 10.1016/j.jpowsour.2007.10.063
H. Li, Q. Ren, J. Chen, et al., React. Funct. Polym. 132 (2018) 104–111.
doi: 10.1117/12.2283513
U. Pal, F. Chen, D. Gyabang, et al., J. Mater. Chem. A 8 (2020) 18826–18839.
doi: 10.1039/d0ta06344d
W. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 46 (2017) 1124–1159.
doi: 10.1039/C6CS00620E
A.K. TripathiIonic, Mater. Today Energy 20 (2021) 100643.
doi: 10.1016/j.mtener.2021.100643
N. Chen, Y. Dai, Y. Xing, et al., Energy Environ. Sci. 10 (2017) 1660–1667.
doi: 10.1039/C7EE00988G
N. Chen, Y. Xing, L. Wang, et al., Nano Energy 47 (2018) 35–42.
doi: 10.1016/j.nanoen.2018.02.036
Y. Gao, L. Shi, S. Lu, et al., Chem. Mater. 31 (2019) 3257–3264.
doi: 10.1021/acs.chemmater.9b00170
L. Shi, T. Zhu, G. Gao, et al., Nat. Commun. 9 (2018) 2630.
doi: 10.1038/s41467-018-05165-w
Y. Huang, S. Liu, Q. Chen, et al., Adv. Funct. Mater. 32 (2022) 2201496.
doi: 10.1002/adfm.202201496
A. Chinnappan, C. Baskar, S. Baskar, et al., J. Mater. Chem. C 5 (2017) 12657–12673.
doi: 10.1039/C7TC03058D
J.C. Dias, D.C. Correia, A.C. Lopes, et al., J. Mater. Sci. 51 (2016) 4442–4450.
doi: 10.1007/s10853-016-9756-3
H. Wang, S. Yuan, D. Ma, et al., Energy Environ. Sci. 8 (2015) 1660–1681.
doi: 10.1039/C4EE03912B
M. Rao, X. Geng, Y. Liao, et al., J. Membrane Sci. 399 (2012) 37–42.
Q. Kang, Z. Zhuang, Y. Liu, et al., Adv. Mater. 35 (2023) 2303460.
doi: 10.1002/adma.202303460
H. Li, M. Li, S.H. Siyal, et al., J. Membrane Sci. 555 (2018) 169–176.
doi: 10.11648/j.ajns.20180705.12
D.K. Maurya, V. Murugadoss, S. Angaiah, J. Phys. Chem. C 123 (2019) 30145–30154.
doi: 10.1021/acs.jpcc.9b09264
X. Zhang, S. Zhao, W. Fan, et al., Electrochim. Acta 301 (2019) 304–311.
doi: 10.1016/j.electacta.2019.01.156
S. Chai, Z. Chang, Y. Zhong, et al., Adv. Funct. Mater. 33 (2023) 2300425.
doi: 10.1002/adfm.202300425
H. Zhao, N. Deng, G. Wang, et al., Chem. Eng. J. 404 (2021) 126542.
doi: 10.1016/j.cej.2020.126542
Gebhardt, A.J. Hanser, Understanding Additive Manufacturing, Hanser Publishers, Munich, 2012.
J. Bauer, C. Crook, T. Baldacchini, Science 380 (2023) 960–966.
doi: 10.1126/science.abq3037
M. Zeng, Y. Du, Q. Jiang, et al., Nature 617 (2023) 292–298.
doi: 10.1038/s41586-023-05898-9
Y. Pang, Y. Cao, Y. Chu, et al., Adv. Funct. Mater. 30 (2020) 1906244.
doi: 10.1002/adfm.201906244
J.A. Lewis, B.Y. Ahn, Nature 518 (2015) 42–43.
doi: 10.1038/518042a
T.D. Ngo, A. Kashani, G. Imbalzano, et al., Compos. Part B 143 (2018) 172–196.
doi: 10.1016/j.compositesb.2018.02.012
M.P. Browne, E. Redondo, M. Pumera, Chem. Rev. 120 (2020) 2783–2810.
doi: 10.1021/acs.chemrev.9b00783
H. Tan, Y. Choong, C. Kuo, et al., Prog. Mater. Sci. 127 (2022) 100945.
doi: 10.1016/j.pmatsci.2022.100945
A. Ambrosi, M. Pumera, Chem. Soc. Rev. 45 (2016) 2740–2755.
doi: 10.1039/C5CS00714C
X. Tian, J. Jin, S. Yuan, et al., Adv. Energy Mater. 7 (2017) 170127.
X. Wen, Q. Zeng, J. Guan, et al., J. Mater. Chem. A 10 (2022) 707–718.
doi: 10.1039/d1ta07252h
S. Zhou, I. Usman, Y. Wang, et al., Energy Storage Mater. 38 (2021) 141–156.
doi: 10.1016/j.ensm.2021.02.041
Q. Zhang, J. Zhou, Z. Chen, et al., Adv. Eng. Mater. 23 (2021) 2100068.
doi: 10.1002/adem.202100068
J. Feng, B. Su, H. Xia, et al., Chem. Soc. Rev. 50 (2021) 3842–3888.
doi: 10.1039/c9cs00757a
C.C. Ho, J.W. Evans, P.K. Wright, J. Micromech. Microeng. 20 (2010) 104009.
doi: 10.1088/0960-1317/20/10/104009
E.B. Duoss, M. Twardowski, J.A. Lewis, Adv. Mater. 19 (2007) 3485–3489.
doi: 10.1002/adma.200701372
M.S. Rahman, M.N.I. Shiblee, K. Ahmed, et al., Macromol. Mater. Eng. 305 (2020) 2000262.
doi: 10.1002/mame.202000262
D. Liu, Z. Wang, Q. Qian, et al., Adv. Funct. Mater. 33 (2023) 2214301.
doi: 10.1002/adfm.202214301
J. Bae, S. Oh, B. Lee, et al., Energy Storage Mater. 57 (2023) 277–288.
doi: 10.1016/j.ensm.2023.02.016
B. Liu, Y. Zhang, Z. Wang, et al., Adv. Mater. 32 (2020) 2003657.
doi: 10.1002/adma.202003657
J. Zhou, J. Cheng, B. Wang, et al., Energy Environ. Sci. 13 (2020) 1933–1970.
doi: 10.1039/d0ee00039f
S.D. Kim, A. Sarkar, J.H. Ahn, Small 17 (2021) 2006262.
doi: 10.1002/smll.202006262
C. Xie, Y. Guo, Z. Zheng, CCS Chem. 5 (2023) 531–543.
doi: 10.31635/ccschem.023.202202635
Q. Zhai, F. Xiang, F. Cheng, et al., Energy Storage Mater. 33 (2020) 116–138.
doi: 10.1016/j.ensm.2020.07.003
J. Gao, C. Chen, Q. Dong, et al., Adv. Mater. 33 (2021) 2005305.
doi: 10.1002/adma.202005305
J. Chang, H. Hu, J. Shang, et al., Small 18 (2022) 2105308.
doi: 10.1002/smll.202105308
Z.A. Ghazi, Z. Sun, C. Sun, et al., Small 15 (2019) 1900687.
doi: 10.1002/smll.201900687
S. Xia, X. Wu, Z. Zhang, et al., Chemistry 5 (2019) 753–785.
doi: 10.1016/j.chempr.2018.11.013
A. Chen, X. Guo, S. Yang, et al., Energy Environ. Sci. 14 (2021) 3599–3608.
doi: 10.1039/d1ee00480h
H. Liao, W. Zhong, T. Li, et al., Electrochim. Acta 404 (2022) 139730.
doi: 10.1016/j.electacta.2021.139730
Y. Zhu, X. Yang, T. Liu, et al., Adv. Mater. 32 (2020) 1901961.
doi: 10.1002/adma.201901961
G. Zhou, F. Li, H. Cheng, Energy Environ. Sci. 7 (2014) 1307–1338.
doi: 10.1039/C3EE43182G
L. Li, L. Wang, T. Ye, et al., Small 17 (2021) 2005015.
doi: 10.1002/smll.202005015
S. Gao, Y. Pan, B. Li, et al., Adv. Funct. Mater. 33 (2023) 2210543.
doi: 10.1002/adfm.202210543
W. Yan, J. Wei, T. Chen, et al., Nano Energy 80 (2021) 105510.
doi: 10.1016/j.nanoen.2020.105510
X. Wang, Y. Lu, D. Geng, et al., ACS Appl. Mater. Interfaces 12 (2020) 53774–53780.
doi: 10.1021/acsami.0c15305
J. He, C. Lu, H. Jiang, et al., Nature 597 (2021) 57–63.
doi: 10.1038/s41586-021-03772-0
L. Ye, Y. Hong, M. Liao, et al., Energy Storage Mater. 28 (2020) 364–374.
doi: 10.1016/j.ensm.2020.03.015
J. Park, M. Park, G. Nam, et al., Adv. Mater. 27 (2015) 1396–1401.
doi: 10.1002/adma.201404639
Y. Gao, H. Hu, J. Chang, et al., Adv. Energy Mater. 11 (2021) 2101809.
doi: 10.1002/aenm.202101809
F. Mo, G. Liang, Z. Huang, et al., Adv. Mater. 32 (2020) 1902151.
doi: 10.1002/adma.201902151
J. Zhou, X. Li, C. Yang, et al., Adv. Mater. 31 (2019) 1804439.
doi: 10.1002/adma.201804439
C. Lu, H. Jiang, X. Cheng, et al., Nature 629 (2024) 86–91.
doi: 10.1038/s41586-024-07343-x
Y. Zhang, L. Yi, J. Zhang, et al., Sci. China Mater. 65 (2022) 2035–2059.
doi: 10.1007/s40843-022-2100-6
M. Chen, Y. Zhang, G. Xing, et al., Energy Environ. Sci. 14 (2021) 3323–3351.
doi: 10.1039/d1ee00271f
W. Fu, K. Turcheniuk, O. Naumov, et al., Mater. Today 48 (2021) 176–197.
doi: 10.1016/j.mattod.2021.01.026
J. Wang, B. Ge, H. Li, et al., Chem. Eng. J. 420 (2021) 129739.
doi: 10.1016/j.cej.2021.129739
S. Xu, Y. Zhang, J. Cho, et al., Nat. Commun. 4 (2013) 1543–1548.
doi: 10.1038/ncomms2553
Q. Liu, T. Liu, D. Liu, et al., Adv. Mater. 28 (2016) 8413–8418.
doi: 10.1002/adma.201602800
P. Wang, M. Hu, H. Wang, et al., Adv. Sci. 7 (2020) 2001116.
doi: 10.1002/advs.202001116
Q. Yang, A. Chen, C. Li, et al., Matter 4 (2021) 3146–3160.
doi: 10.1016/j.matt.2021.07.016
L. Zeng, L. Qiu, H. Cheng, Energy Storage Mater. 23 (2019) 434–438.
doi: 10.1016/j.ensm.2019.04.019
K. Liu, B. Kong, W. Liu, et al., Joule 2 (2018) 1857–1865.
doi: 10.1016/j.joule.2018.06.003
J. Qian, Q. Chen, M. Hong, et al., Mater. Today 54 (2022) 18–26.
doi: 10.1016/j.mattod.2022.02.015
A.J. D'Angelo, M.J. Panzer, Chem. Mater. 31 (2019) 2913–2922.
doi: 10.1021/acs.chemmater.9b00172
P. Guo, A. Su, Y. Wei, et al., ACS Appl. Mater. Interfaces 11 (2019) 19413–19420.
doi: 10.1021/acsami.9b02182
J. Rao, N. Liu, Z. Zhang, et al., Nano Energy 51 (2018) 425–433.
doi: 10.1016/j.nanoen.2018.06.067
Y. Shi, Y. Wang, Y. Gu, et al., Chem. Eng. J. 392 (2020) 123645.
doi: 10.1016/j.cej.2019.123645
Y. Sun, Y. Ren, Q. Li, et al., Chin. J. Polym. Sci. 37 (2019) 1053–1059.
doi: 10.1007/s10118-019-2325-x
D. Weng, F. Xu, X. Li, et al., ACS Appl. Mater. Interfaces 12 (2020) 57477–57485.
doi: 10.1021/acsami.0c18832
B. Zhou, C. Zuo, Z. Xiao, et al., Chem. Eur. J. 24 (2018) 19200–19207.
doi: 10.1002/chem.201803943
S. Wang, Y. Jiang, X. Hu, Adv. Mater. 34 (2022) 2200945.
doi: 10.1002/adma.202200945
Y. Cao, T.G. Morrissey, E. Acome, et al., Adv. Mater. 29 (2017) 1605099.
doi: 10.1002/adma.201605099
N. Wu, Y. Shi, S. Lang, et al., Angew. Chem. Int. Ed. 58 (2019) 18146–18149.
doi: 10.1002/anie.201910478
M. Zhu, S. He, Y. Dai, et al., ACS Sustain. Chem. Eng. 6 (2018) 17087–17098.
doi: 10.1021/acssuschemeng.8b04452
C. Gu, M. Wang, K. Zhang, et al., Adv. Mater. 35 (2023) 2208392.
doi: 10.1002/adma.202208392
J. Xiang, Y. Zhang, B. Zhang, et al., Energy Environ. Sci. 14 (2021) 3510–3521.
doi: 10.1039/d1ee00049g
H. Yang, Q. Li, C. Guo, et al., Chem. Commun. 54 (2018) 4132–4135.
doi: 10.1039/c7cc09942h
J. Wang, Y. Yamada, K. Sodeyama, et al., Nat. Energy 3 (2017) 22–29.
doi: 10.1038/s41560-017-0033-8
J. Wang, F. Lin, H. Jia, et al., Angew. Chem. Int. Ed. 53 (2014) 10099–10104.
doi: 10.1002/anie.201405157
Q. Sun, X. Chen, J. Xie, et al., RSC Adv. 9 (2019) 42183–42193.
doi: 10.1039/c9ra08677c
H. Yang, C. Guo, J. Chen, et al., Angew. Chem. Int. Ed. 58 (2019) 791–795.
doi: 10.1002/anie.201811291
H. Jia, H. Onishi, R. Wagner, et al., ACS Appl. Mater. Interfaces 10 (2018) 42348–42355.
doi: 10.1021/acsami.8b15505
M. Que, Y. Tong, G. Wei, et al., J. Mater. Chem. A 4 (2016) 14132–14140.
doi: 10.1039/C6TA04914A
G. Zhou, X. Lin, J. Liu, et al., Energy Storage Mater. 34 (2021) 629–639.
doi: 10.1016/j.ensm.2020.10.012
H. Sun, G. Zhu, Y. Zhu, et al., Adv. Mater. 32 (2020) 2001741.
doi: 10.1002/adma.202001741
B. Zhou, M. Yang, C. Zuo, et al., ACS Macro Lett. 9 (2020) 525–532.
doi: 10.1021/acsmacrolett.9b01024
T. Chen, Z. Jin, Y. Liu, et al., Angew. Chem. Int. Ed. 61 (2022) e202207645.
doi: 10.1002/anie.202207645
K. Amine, Nat. Energy 1 (2016) 15018.
doi: 10.1038/nenergy.2015.18
X. Li, K. Qian, Y. He, et al., J. Mater. Chem. A 5 (2017) 18888–18895.
doi: 10.1039/C7TA04415A
Y. Jing, J. Liu, X. Lin, et al., Energy Storage Mater. 37 (2021) 609–618.
doi: 10.2174/1389201021999201116160247
P. Lv, Y. Li, Y. Wu, et al., ACS Appl. Mater. Interfaces 10 (2018) 25384–25392.
doi: 10.1021/acsami.8b06800
F. Chen, C. Guo, H. Zhou, et al., Small 18 (2022) 2106352.
doi: 10.1002/smll.202106352
X. Li, Z. Zhang, S. Li, et al., J. Mater. Chem. A 5 (2017) 21362–21369.
doi: 10.1039/C7TA04204C
X. Li, Y. Zheng, C. Li, Energy Storage Mater. 29 (2020) 273–280.
doi: 10.1016/j.ensm.2020.04.037
Y. Chen, Q. Kang, P. Jiang, et al., Nano Res. 14 (2021) 2424–2431.
doi: 10.1007/s12274-020-3245-3
Mengwen Wang , Qintao Sun , Yue Liu , Zhengan Yan , Qiyu Xu , Yuchen Wu , Tao Cheng . Impact of lithium nitrate additives on the solid electrolyte interphase in lithium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(2): 100203-100203. doi: 10.1016/j.cjsc.2023.100203
Mengya Ge , Zijie Zhou , Huaiyang Zhu , Ying Wang , Chao Wang , Chao Lai , Qinghong Wang . Multifunctional gel electrolytes for high-performance zinc metal batteries. Chinese Chemical Letters, 2025, 36(7): 110121-. doi: 10.1016/j.cclet.2024.110121
Haining Peng , Huijun Liu , Chengzong Li , Yingfu Li , Qizhi Chen , Tao Li . Diluent modified weakly solvating electrolyte for fast-charging high-voltage lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 109556-. doi: 10.1016/j.cclet.2024.109556
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
Jiaojiao Liang , Youming Peng , Zhichao Xu , Yufei Wang , Menglong Liu , Xin Liu , Di Huang , Yuehua Wei , Zengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Yubin Feng , Weihang Zhu , Xinting Yang , Zhe Yang , Chenke Wei , Yukai Guo , Andrew K. Whittaker , Chun Shen , Yue Zhao , Wenrui Qu , Bai Yang , Quan Lin . Amphibian-inspired conductive ionogel stabilizing in air/water as a wearable amphibious flexible sensor for drowning alarms. Chinese Chemical Letters, 2025, 36(4): 110554-. doi: 10.1016/j.cclet.2024.110554
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Yuhuan Meng , Long Zhang , Lequan Wang , Junming Kang , Hongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025
Jie Chen , Hannan Chen , Bingbing Tian . Enhancing moisture and electrochemical stability of the Li5.7PS4.7Cl1.3 electrolyte by boron nitride coating for all-solid-state lithium metal batteries. Chinese Chemical Letters, 2025, 36(7): 109775-. doi: 10.1016/j.cclet.2024.109775
Haotian Zhang , Shengfa Feng , Mufan Cao , Xiong Xiong Liu , Pengcheng Yuan , Yaping Wang , Min Gao , Long Pan , Zhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Wenbiao Zhang , Bolong Yang , Zhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630
Qian Wang , Dong Yang , Wenxing Xin , Yongqi Wang , Wenchang Han , Wengxiang Yan , Chunman Yang , Fei Wang , Yiyong Zhang , Ziyi Zhu , Xue Li . Modulation of desolvation barriers and inhibition of lithium dendrites based on lithophilic electrolyte additives for lithium metal anode. Chinese Chemical Letters, 2025, 36(6): 110669-. doi: 10.1016/j.cclet.2024.110669
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334