Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering
-
* Corresponding author.
E-mail address: liuyingg@njnu.edu.cn (Y. Liu).
Citation:
Xuyun Lu, Yanan Chang, Shasha Wang, Xiaoxuan Li, Jianchun Bao, Ying Liu. Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering[J]. Chinese Chemical Letters,
;2025, 36(5): 110277.
doi:
10.1016/j.cclet.2024.110277
J. Tang, T. Zhao, D. Solanki, et al., Joule 5 (2021) 1432–1461.
doi: 10.1016/j.joule.2021.04.012
J. Xie, L. Zhong, X. Yang, et al., Chin. Chem. Lett. 35 (2024) 108472.
doi: 10.1016/j.cclet.2023.108472
J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. 118 (2006) 7116–7139.
doi: 10.1002/ange.200503779
H.W. Kim, M.B. Ross, N. Kornienko, et al., Nat. Catal. 1 (2018) 282–290.
doi: 10.1038/s41929-018-0044-2
J.M. Campos-Martin, G. Blanco-Brieva, J.L. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962–6984.
doi: 10.1002/anie.200503779
S.C. Perry, D. Pangotra, L. Vieira, et al., Nat. Rev. Chem. 3 (2019) 442–458.
doi: 10.1038/s41570-019-0110-6
Y. Tian, D. Deng, L. Xu, et al., Nano-Micro Lett. 15 (2023) 122.
doi: 10.1007/s40820-023-01067-9
A. Byeon, W.C. Yun, J.M. Kim, J.W. Lee, Chem. Eng. J. 456 (2023) 141042.
doi: 10.1016/j.cej.2022.141042
Y. Bu, Y. Wang, G.F. Han, et al., Adv. Mater. 33 (2021) 2103266.
doi: 10.1002/adma.202103266
R. Ciriminna, L. Albanese, F. Meneguzzo, M. Pagliaro, ChemSusChem 9 (2016) 3374–3381.
doi: 10.1002/cssc.201600895
K. Jiang, J. Zhao, H. Wang, Adv. Funct. Mater. 30 (2020) 2003321.
doi: 10.1002/adfm.202003321
Y. Wang, G.I.N. Waterhouse, L. Shang, T. Zhang, Adv. Energy Mater. 11 (2020) 2003323.
J. Ma, X. Peng, Z. Zhou, Y. Shen, Y. Zhang, Chin. Chem. Lett. 34 (2023) 108784.
doi: 10.1016/j.cclet.2023.108784
H. Tan, P. Zhou, M. Liu, et al., Nat. Synth. 2 (2023) 557–563.
doi: 10.1038/s44160-023-00272-z
Z. Teng, Q. Zhang, H. Yang, et al., Nat. Catal. 4 (2021) 374–384.
doi: 10.1038/s41929-021-00605-1
J. Ma, X. Peng, Z. Zhou, et al., Angew. Chem. Int. Ed. 61 (2022) e202210856.
doi: 10.1002/anie.202210856
J. Ma, C. Peng, X. Peng, et al., J. Am. Chem. Soc. 146 (2024) 21147–21159.
doi: 10.1021/jacs.4c07170
X. Yang, Y. Zeng, W. Alnoush, et al., Adv. Mater. 34 (2022) 2107954.
doi: 10.1002/adma.202107954
Y. Wen, T. Zhang, J. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202205972.
doi: 10.1002/anie.202205972
Z. Zhou, Y. Kong, H. Tan, et al., Adv. Mater. 34 (2022) 2106541.
doi: 10.1002/adma.202106541
Y. Zhou, G. Chen, J. Zhang, J. Mater. Chem. A 8 (2020) 20849–20869.
doi: 10.1039/d0ta07900f
D. Ouyang, D. Gao, J. Hong, Z. Jiang, X. Zhao, J. Energy Chem. 79 (2023) 135–147.
doi: 10.1016/j.jechem.2022.10.036
D. Zhang, E. Mitchell, X. Lu, et al., Mater. Today 63 (2023) 339–359.
doi: 10.1016/j.mattod.2023.02.004
S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, et al., Nat. Mater. 12 (2013) 1137–1143.
doi: 10.1038/nmat3795
X. Zhao, H. Yang, J. Xu, T. Cheng, Y. Li, ACS Mater. Lett. 3 (2021) 996–1002.
doi: 10.1021/acsmaterialslett.1c00263
Z. Lu, G. Chen, S. Siahrostami, et al., Nat. Catal. 1 (2018) 156–162.
doi: 10.1038/s41929-017-0017-x
L. Li, C. Tang, Y. Zheng, et al., Adv. Energy Mater. 10 (2020) 2000789.
doi: 10.1002/aenm.202000789
K. Dong, J. Liang, Y. Wang, et al., ACS Catal. 12 (2022) 6092–6099.
doi: 10.1021/acscatal.2c00819
M. Wang, X. Dong, Z. Meng, et al., Angew. Chem. Int. Ed. 60 (2021) 11190–11195.
doi: 10.1002/anie.202100897
S. Ding, B. Xia, M. Li, et al., Energy Environ. Sci. 16 (2023) 3363–3372.
doi: 10.1039/d3ee00509g
Y. Yao, H. Wang, K. Dong, et al., J. Mater. Chem. A 11 (2023) 22154–22160.
doi: 10.1039/d3ta05092k
L. Zhang, J. Liang, L. Yue, et al., Nano Res. 15 (2022) 304–309.
doi: 10.1007/s12274-021-3474-0
X.L. Zhang, X. Su, Y.R. Zheng, et al., Angew. Chem. Int. Ed. 60 (2021) 26922.
doi: 10.1002/anie.202111075
F. Xia, B. Li, Y. Liu, et al., Adv. Funct. Mater. 31 (2021) 2104716.
doi: 10.1002/adfm.202104716
F. Ma, S. Wang, X. Liang, et al., Appl. Catal. B 279 (2020) 119371.
doi: 10.1016/j.apcatb.2020.119371
S. Xu, Y. Gao, T. Liang, L. Zhang, B. Wang, Chin. Chem. Lett. 33 (2022) 5152–5157.
doi: 10.1016/j.cclet.2022.01.057
J.Y. Zhang, C. Xia, H.F. Wang, C. Tang, J. Energy Chem. 67 (2022) 432–450.
doi: 10.1016/j.jechem.2021.10.013
J. Liu, Z. Gong, M. Yan, et al., Small 18 (2022) 2103824.
doi: 10.1002/smll.202103824
Y. Pang, H. Xie, Y. Sun, M.M. Titirici, G.L. Chai, J. Mater. Chem. A 8 (2020) 24996–25016.
doi: 10.1039/d0ta09122g
Q. Yang, W. Xu, S. Gong, et al., Nat. Commun. 11 (2020) 5478.
doi: 10.1038/s41467-020-19309-4
Z. Chen, J. Wu, Z. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202200086.
doi: 10.1002/anie.202200086
W. Liu, J. Feng, R. Yin, et al., Chem. Eng. J. 430 (2022) 132990.
doi: 10.1016/j.cej.2021.132990
X. Zhang, Y. Xia, C. Xia, H. Wang, Trends Chem. 2 (2020) 942–953.
doi: 10.1016/j.trechm.2020.07.007
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, et al., ACS Catal. 8 (2018) 4064–4081.
doi: 10.1021/acscatal.8b00217
B. Sabri Rawah, M. Albloushi, W. Li, Chem. Eng. J. 466 (2023) 143282.
doi: 10.1016/j.cej.2023.143282
A. Huang, R.S. Delima, Y. Kim, et al., J. Am. Chem. Soc. 144 (2022) 14548–14554.
doi: 10.1021/jacs.2c03158
M. Li, H. Lan, X. An, et al., Appl. Catal. B 339 (2023) 123125.
doi: 10.1016/j.apcatb.2023.123125
M.A. Modestino, D.Fernandez Rivas, S.M.H. Hashemi, J.G.E. Gardeniers, D. Psaltis, Energy Environ. Sci. 9 (2016) 3381–3391.
doi: 10.1039/C6EE01884J
Z. Wei, H. Xu, Z. Lei, et al., Chin. Chem. Lett. 33 (2022) 920–925.
doi: 10.1016/j.cclet.2021.07.006
H. Sheng, A.N. Janes, R.D. Ross, et al., Nat. Catal. 5 (2022) 716–725.
doi: 10.1038/s41929-022-00826-y
J.H. Kim, D. Shin, J. Lee, et al., ACS Nano 14 (2020) 1990–2001.
doi: 10.1021/acsnano.9b08494
X. Zhao, Y. Liu, J. Am. Chem. Soc. 143 (2021) 9423–9428.
doi: 10.1021/jacs.1c02186
K. Liu, P. Chen, Z. Sun, et al., Nano Res. 16 (2023) 10724–10741.
doi: 10.1007/s12274-023-5823-7
Y. Cheng, H. Wang, H. Song, et al., Nano Res. Energy 2 (2023) e9120082.
doi: 10.26599/nre.2023.9120082
X. Guo, S. Lin, J. Gu, et al., ACS Catal. 9 (2019) 11042–11054.
doi: 10.1021/acscatal.9b02778
A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Chem. Rev. 118 (2018) 2302–2312.
doi: 10.1021/acs.chemrev.7b00488
V. Viswanathan, H.A. Hansen, J. Rossmeisl, J.K. Nørskov, J. Phys. Chem. Lett. 3 (2012) 2948–2951.
doi: 10.1021/jz301476w
X. Wang, Z. Li, Y. Qu, et al., Chem 5 (2019) 1486–1511.
doi: 10.1016/j.chempr.2019.03.002
X. Zhang, C. Wang, K. Chen, et al., Adv. Mater. 35 (2023) 2211512.
doi: 10.1002/adma.202211512
S.J. Freakley, Q. He, J.H. Harrhy, et al., Science 351 (2016) 965–968.
doi: 10.1126/science.aad5705
Q. Chang, P. Zhang, A.H.B. Mostaghimi, et al., Nat. Commun. 11 (2020) 2178.
doi: 10.1038/s41467-020-15843-3
Z. Yu, S. Lv, Q. Yao, et al., Adv. Mater. 35 (2023) 2208101.
doi: 10.1002/adma.202208101
M. Song, W. Liu, J. Zhang, et al., Adv. Funct. Mater. 33 (2023) 2212087.
doi: 10.1002/adfm.202212087
Y. Sun, L. Silvioli, N.R. Sahraie, et al., J. Am. Chem. Soc. 141 (2019) 12372–12381.
doi: 10.1021/jacs.9b05576
Q. Zhang, L. Zheng, F. Gu, et al., Nano Energy 116 (2023) 108798.
doi: 10.1016/j.nanoen.2023.108798
Z. Zhuang, A. Huang, X. Tan, et al., Joule 7 (2023) 1003–1015.
doi: 10.1016/j.joule.2023.04.005
L. Wang, J. Wu, S. Wang, et al. Nano Res. 17 (2024) 3261–3301.
doi: 10.1007/s12274-023-6037-8
T. Gan, D. Wang, Nano Res. 17 (2024) 18–38.
doi: 10.1007/s12274-023-5700-4
C. Tang, L. Chen, H. Li, et al., J. Am. Chem. Soc. 143 (2021) 7819–7827.
doi: 10.1021/jacs.1c03135
E. Jung, H. Shin, B.H. Lee, et al., Nat. Mater. 19 (2020) 436–442.
doi: 10.1038/s41563-019-0571-5
H. Shen, N. Qiu, L. Yang, et al., Small 18 (2022) 2200730.
doi: 10.1002/smll.202200730
L. Jing, Q. Tian, P. Su, et al., J. Mater. Chem. A 10 (2022) 4068–4075.
doi: 10.1039/d1ta10416k
C. Liu, Z. Yu, F. She, et al., Energy Environ. Sci. 16 (2023) 446–459.
doi: 10.1039/d2ee02734h
Y.X. Du, Q. Yang, W.T. Lu, et al., Adv. Funct. Mater. 33 (2023) 2300895.
doi: 10.1002/adfm.202300895
J. Du, G. Han, W. Zhang, et al., Nat. Commun. 14 (2023) 4766.
doi: 10.1038/s41467-023-40467-8
Y. Wang, R. Shi, L. Shang, et al., Angew. Chem. Int. Ed. 59 (2020) 13057–13062.
doi: 10.1002/anie.202004841
C. Tang, Y. Jiao, B. Shi, et al., Angew. Chem. Int. Ed. 59 (2020) 9171–9176.
doi: 10.1002/anie.202003842
E. Berl, Trans. Electrochem. Soc. 76 (1939) 359.
doi: 10.1149/1.3500291
Q. Wang, L. Ren, J. Zhang, et al., Adv. Energy Mater. 13 (2023) 2301543.
doi: 10.1002/aenm.202301543
G. Wei, Y. Li, X. Liu, et al., Angew. Chem. Int. Ed. 62 (2023) e202313914.
doi: 10.1002/anie.202313914
J. Huang, C. Fu, J. Chen, et al., CCS Chem. 4 (2022) 566–583.
doi: 10.31635/ccschem.021.202000750
K. Dong, J. Liang, Y. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 10583–10587.
doi: 10.1002/anie.202101880
Z. Bao, J. Zhao, S. Zhang, et al., Nano Res. 16 (2023) 9050–9058.
doi: 10.1007/s12274-023-5682-2
H. Jiang, C. Zhang, Z. Wang, et al., Appl. Catal. A 661 (2023) 119242.
doi: 10.1016/j.apcata.2023.119242
Q. Yuan, J. Zhao, D.H. Mok, et al., Nano Lett. 22 (2021) 1257–1264.
J. Wu, M. Hou, Z. Chen, et al., Adv. Mater. 34 (2022) 2202995.
doi: 10.1002/adma.202202995
Y. Pang, K. Wang, H. Xie, et al., ACS Catal. 10 (2020) 7434–7442.
doi: 10.1021/acscatal.0c00584
G.L. Chai, Z. Hou, T. Ikeda, K. Terakura, J. Phys. Chem. C 121 (2017) 14524–14533.
doi: 10.1021/acs.jpcc.7b04959
N. Ramaswamy, S. Mukerjee, J. Phys. Chem. C 115 (2011) 18015–18026.
doi: 10.1021/jp204680p
M. Ko, Y. Kim, J. Woo, et al., Nat. Catal. 5 (2022) 37–44.
C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Science 366 (2019) 226–231.
doi: 10.1126/science.aay1844
H. Li, P. Wen, D.S. Itanze, et al., Nat. Commun. 11 (2020) 3928.
doi: 10.1038/s41467-020-17584-9
H. Sheng, R.D. Ross, J.R. Schmidt, S. Jin, ACS Energy Lett. 8 (2023) 196–212.
doi: 10.1021/acsenergylett.2c01945
L. Sun, X. Jin, T. Su, A.C. Fisher, X. Wang, Adv. Mater. 36 (2024) 2306336.
doi: 10.1002/adma.202306336
Y. Wang, H. Yang, Z. Liu, et al., J. Energy Chem. 87 (2023) 247–255.
doi: 10.54254/2754-1169/56/20231172
Z. Su, Q. Huang, Q. Guo, et al., Nano Res. Energy 2 (2023) e9120078.
doi: 10.26599/nre.2023.9120078
Z. Che, X. Lu, B. Cai, et al., Nano Res. 15 (2022) 1269–1275.
doi: 10.1007/s12274-021-3645-z
L.P. Yuan, T. Tang, J.S. Hu, L.J. Wan, Acc. Mater. Res. 2 (2021) 907–919.
doi: 10.1021/accountsmr.1c00135
S. Geng, Y. Ji, S. Yang, et al., Adv. Funct. Mater. 33 (2023) 2300636.
doi: 10.1002/adfm.202300636
Y. Zhang, M. Wang, W. Zhu, et al., Angew. Chem. Int. Ed. 62 (2023) e202218924.
doi: 10.1002/anie.202218924
E.L. Gyenge, C.W. Oloman, J. Appl. Electrochem. 31 (2001) 233–243.
doi: 10.1023/A:1004159102510
X. Zhang, X. Zhao, P. Zhu, et al., Nat. Commun. 13 (2022) 2880.
doi: 10.1038/s41467-022-30337-0
E. Jung, H. Shin, W. Hooch Antink, Y.E. Sung, T. Hyeon, ACS Energy Lett. 5 (2020) 1881–1892.
doi: 10.1021/acsenergylett.0c00812
Y. Jiang, P. Ni, C. Chen, et al., Adv. Energy Mater. 8 (2018) 1801909.
doi: 10.1002/aenm.201801909
J. An, N. Li, Y. Wu, et al. Environ. Sci. Technol. 54 (2020) 10916–10925.
doi: 10.1021/acs.est.0c03233
R.M. Sellers, Analyst 105 (1980) 950–954.
doi: 10.1039/an9800500950
J. Xie, J. Jing, J. Gu, et al., J. Environ. Chem. Eng. 10 (2022) 107882.
doi: 10.1016/j.jece.2022.107882
Z. Xing, K. Shi, Z.S. Parsons, X. Feng, ACS Catal. 13 (2023) 2780–2789.
doi: 10.1021/acscatal.2c05639
Y. Wang, R. Shi, L. Shang, et al., Nano Energy 96 (2022) 107046.
doi: 10.1016/j.nanoen.2022.107046
E. Zhang, L. Tao, J. An, et al., Angew. Chem. Int. Ed. 61 (2022) e202117347.
doi: 10.1002/anie.202117347
W. Zhou, X. Meng, L. Rajic, et al., Electrochem. Commun. 96 (2018) 37–41.
doi: 10.1016/j.elecom.2018.09.007
J. An, Y. Feng, N. Wang, et al., J. Hazard. Mater. 428 (2022) 128185.
doi: 10.1016/j.jhazmat.2021.128185
H. Zhang, S. Wu, X. Huang, et al., Chem. Eng. J. 428 (2022) 131534.
doi: 10.1016/j.cej.2021.131534
Z. Chen, S. Chen, S. Siahrostami, et al., React. Chem. Eng. 2 (2017) 239–245.
doi: 10.1039/C6RE00195E
C. Xia, S. Back, S. Ringe, et al., Nat. Catal. 3 (2020) 125–134.
doi: 10.1038/s41929-019-0402-8
B. Xia, Q. Huang, H. Wang, et al., ACS Appl. Mater. Interfaces 15 (2023) 32416–32424.
doi: 10.1021/acsami.3c04772
Z. Lin, Q. Zhang, J. Pan, et al., Energy Environ. Sci. 15 (2022) 1172–1182.
doi: 10.1039/d1ee02884g
E. Ruiz-López, E. Amores, A. Raquel de la Osa, F. Dorado, A. de Lucas-Consuegra, Chem. Eng. J. 379 (2020) 122289.
doi: 10.1016/j.cej.2019.122289
S.M.H. Hashemi, P. Karnakov, P. Hadikhani, et al., Energy Environ. Sci. 12 (2019) 1592–1604.
doi: 10.1039/C9EE00219G
P. Farinazzo Bergamo Dias Martins, I. Plazl, D. Strmcnik, B. Genorio, Curr. Opin. Electrochem. 38 (2023) 101223.
doi: 10.1016/j.coelec.2023.101223
H. Sheng, A.N. Janes, R.D. Ross, et al., Energy Environ. Sci. 13 (2020) 4189–4203.
doi: 10.1039/d0ee01925a
H. Yin, Y. Dou, S. Chen, et al., Adv. Mater. 32 (2020) 1904870.
doi: 10.1002/adma.201904870
R.J. Lewis, K. Ueura, X. Liu, et al., ACS Catal. 13 (2023) 1934–1945.
doi: 10.1021/acscatal.2c05799
S. Wu, H. Zhang, X. Huang, Z. Wei, Chem. Commun. 58 (2022) 8942–8945.
doi: 10.1039/d2cc03181g
Guan-Nan Xing , Di-Ye Wei , Hua Zhang , Zhong-Qun Tian , Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021
Shaojie Ding , Henan Wang , Xiaojing Dai , Yuru Lv , Xinxin Niu , Ruilian Yin , Fangfang Wu , Wenhui Shi , Wenxian Liu , Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302
Chenhao Zhang , Qian Zhang , Yezhou Hu , Hanyu Hu , Junhao Yang , Chang Yang , Ye Zhu , Zhengkai Tu , Deli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429
Quanyou Guo , Yue Yang , Tingting Hu , Hongqi Chu , Lijun Liao , Xuepeng Wang , Zhenzi Li , Liping Guo , Wei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235
Chunru Liu , Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136
Xiaoya Cui , Yanchang Liu , Qiang Li , He Zhu , Shibo Xi , Jianrong Zeng . Ultrafast crystallinity engineering of PtCo3 alloy for enhanced oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(5): 110069-. doi: 10.1016/j.cclet.2024.110069
Jiayu Huang , Kuan Chang , Qi Liu , Yameng Xie , Zhijia Song , Zhiping Zheng , Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Weiping Xiao , Yuhang Chen , Qin Zhao , Danil Bukhvalov , Caiqin Wang , Xiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176
Bowen Li , Ting Wang , Ming Xu , Yuqi Wang , Zhaoxing Li , Mei Liu , Wenjing Zhang , Ming Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467
Yiqian Jiang , Zihan Yang , Xiuru Bi , Nan Yao , Peiqing Zhao , Xu Meng . Mediated electron transfer process in α-MnO2 catalyzed Fenton-like reaction for oxytetracycline degradation. Chinese Chemical Letters, 2024, 35(8): 109331-. doi: 10.1016/j.cclet.2023.109331
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Kunsong Hu , Yulong Zhang , Jiayi Zhu , Jinhua Mai , Gang Liu , Manoj Krishna Sugumar , Xinhua Liu , Feng Zhan , Rui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423
Jialin Cai , Yizhe Chen , Ruiwen Zhang , Cheng Yuan , Zeyu Jin , Yongting Chen , Shiming Zhang , Jiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Jin Long , Xingqun Zheng , Bin Wang , Chenzhong Wu , Qingmei Wang , Lishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354