FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors
-
* Corresponding authors.
E-mail addresses: miaolu@dicp.ac.cn (L. Miao), zcxu@dicp.ac.cn (Z. Xu).
Citation:
Chunyu Yan, Qinglong Qiao, Wei Zhou, Xuelian Zhou, Yonghui Chen, Lu Miao, Zhaochao Xu. FRET-based in vitro assay for rapid detecting of SARS-CoV-2 entry inhibitors[J]. Chinese Chemical Letters,
;2025, 36(5): 110258.
doi:
10.1016/j.cclet.2024.110258
M. Hoffmann, H. Kleine-Weber, S. Schroeder, et al., Cell 181 (2020) 271–280.
doi: 10.1016/j.cell.2020.02.052
M.L. Yeung, J.L.L. Teng, L. Jia, et al., Cell 184 (2021) 2212–2228.
doi: 10.1016/j.cell.2021.02.053
B. Ju, Q. Zhang, J. Ge, et al., Nature 584 (2020) 115–119.
doi: 10.1038/s41586-020-2380-z
V. Monteil, H. Kwon, P. Prado, et al., Cell 181 (2020) 905–913.
doi: 10.1016/j.cell.2020.04.004
A. Acharya, A.S. Pathania, K. Pandey, et al., Clin. Transl. Med. 12 (2022) e806.
doi: 10.1002/ctm2.806
M. Wang, H. Yan, L. Chen, et al., PLoS One 18 (2023) e0285722.
doi: 10.1371/journal.pone.0285722
A.M. Carabelli, T.P. Peacock, L.G. Thorne, et al., Nat. Rev. Microbiol. 21 (2023) 162–177.
Y. Hu, E.M. Lewandowski, H. Tan, et al., ACS Cent. Sci. 9 (2023) 1658–1669.
doi: 10.1021/acscentsci.3c00538
V.P. Chavda, R. Bezbaruah, K. Deka, et al., Vaccines 10 (2022) 1926.
doi: 10.3390/vaccines10111926
W. Chiu, L. Verschueren, C. Van den Eynde, et al., J. Med. Virol. 94 (2022) 3101–3111.
doi: 10.1002/jmv.27683
J. Liu, K. Li, L. Cheng, et al., Int. J. Infect. Dis. 103 (2021) 300–304.
doi: 10.1109/icpes53652.2021.9683843
W. Wan, S. Zhu, S. Li, et al., ACS Infect. Dis. 7 (2020) 1409–1422.
S. Yan, H. Sun, X. Bu, et al., Front. Pharmacol. 11 (2020) 548175.
J. Rout, B.C. Swain, U. Tripathy, J. Biomol. Struct. Dyn. 40 (2020) 860–874.
C. Nichols, J. Ng, A. Keshu, et al., Front. Pharmacol. 11 (2020) 615211.
doi: 10.3389/fphar.2020.615211
S.M. Chowdhury, S.A. Talukder, A.M. Khan, et al., J. Phys. Chem. B 124 (2020) 9785–9792.
doi: 10.1021/acs.jpcb.0c05621
S.J.Y. Macalino, V. Gosu, S. Hong, et al., Arch. Pharm. Res. 38 (2015) 1686–1701.
doi: 10.1007/s12272-015-0640-5
N. Okimoto, N. Futatsugi, H. Fuji, et al., PLoS Comput. Biol. 5 (2009) e1000528.
doi: 10.1371/journal.pcbi.1000528
J. Jones, R. Heim, E. Hare, et al., SLAS Discov. 5 (2000) 307–317.
doi: 10.1177/108705710000500502
G. Milligan, J. Pharm. Sci. 21 (2004) 397–405.
S.M. Rodems, B.D. Hamman, C. Lin, et al., Assay Drug Dev. Techn. 1 (2002) 9–19.
doi: 10.1089/154065802761001266
K. Gorshkov, K. Susumu, J. Chen, et al., ACS Nano 14 (2020) 12234–12247.
doi: 10.1021/acsnano.0c05975
S. Das, T. Yin, Q. Yang, et al., P. Natl. Acad. Sci. 112 (2015) 267–276.
doi: 10.11646/phytotaxa.222.4.4
J. Chen, W. Liu, X. Fang, et al., Chin. Chem. Lett. 33 (2022) 5042–5046.
doi: 10.1016/j.cclet.2022.03.120
J. Li, Q. Qiao, Y. Ruan, et al., Chin. Chem. Lett. 34 (2023) 108266.
doi: 10.1016/j.cclet.2023.10826602.003e=xml&restype=unixref&xml=|Adv. Mater.||34||2203699|2022|||
W. Liu, J. Chen, Q. Qiao, et al., Chin. Chem. Lett. 33 (2022) 4943–4947.
doi: 10.1016/j.cclet.2022.03.121
Y. Zhang, W. Zhou, N. Xu, et al., Chin. Chem. Lett. 34 (2023) 107472.
doi: 10.1016/j.cclet.2022.04.070
L. Miao, W. Zhou, C. Yan, et al., Acta Pharm. Sin. B 12 (2022) 3739–3742.
doi: 10.1016/j.apsb.2022.05.033
L. Miao, C. Yan, Y. Chen, et al., Cell Chem. Biol. 30 (2023) 248–260.
doi: 10.1016/j.chembiol.2023.02.001
J.B. Grimm, B.P. English, J. Chen, et al., Nat. Methods 12 (2015) 244–250.
doi: 10.1038/nmeth.3256
D. Si, Q. Li, Y. Bao, et al., Angew. Chem. Int. Ed. 62 (2023) e202307641.
doi: 10.1002/anie.202307641
C.U. Murade, S. Chaudhuri, I. Nabti, et al., ACS Sens. 6 (2021) 2233–2240.
doi: 10.1021/acssensors.1c00167
A.R. Braun, N.N. Kochen, S.L. Yuen, et al., ASN Neuro 15 (2023) 17590914231184086.
doi: 10.1177/17590914231184086
F. Xing, N. Ai, S. Huang, et al., Front. Bioeng. Biotech. 10 (2022) 839078.
doi: 10.3389/fbioe.2022.839078
Yang Li , Ning Sheng , Kun Wang , Yuhuan Li , Jiandong Jiang , Jinlan Zhang . Azvudine alleviates SARS-CoV-2-induced inflammation by targeting myeloperoxidase in NETosis. Chinese Chemical Letters, 2025, 36(5): 110238-. doi: 10.1016/j.cclet.2024.110238
Yulong Shi , Fenbei Chen , Mengyuan Wu , Xin Zhang , Runze Meng , Kun Wang , Yan Wang , Yuheng Mei , Qionglu Duan , Yinghong Li , Rongmei Gao , Yuhuan Li , Hongbin Deng , Jiandong Jiang , Yanxiang Wang , Danqing Song . Chemical construction and anti-HCoV-OC43 evaluation of novel 10,12-disubstituted aloperine derivatives as dual cofactor inhibitors of TMPRSS2 and SR-B1. Chinese Chemical Letters, 2024, 35(5): 108792-. doi: 10.1016/j.cclet.2023.108792
Zhichao Zhou , Fuqian Chen , Xiaotong Xia , Dong Ye , Rong Zhou , Lei Li , Tao Deng , Zhenhua Ding , Fang Liu . Developing a fluorescence substrate for HRP-based diagnostic assays with superiorities over the commercial ADHP. Chinese Chemical Letters, 2024, 35(6): 108970-. doi: 10.1016/j.cclet.2023.108970
Zhexin Chen , Yuqing Shi , Fang Zhong , Kai Zhang , Furong Zhang , Shenghong Xie , Zhongbin Cheng , Qian Zhou , Yi-You Huang , Hai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956
Zhiqiang Liu , Qiang Gao , Wei Shen , Meifeng Xu , Yunxin Li , Weilin Hou , Hai-Wei Shi , Yaozuo Yuan , Erwin Adams , Hian Kee Lee , Sheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338
Yuxin Li , Chengbin Liu , Qiuju Li , Shun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541
Gengchen Guo , Tianyu Zhao , Ruichang Sun , Mingzhe Song , Hongyu Liu , Sen Wang , Jingwen Li , Jingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198
Yunxin Li , Jinghui Zhang , Jisen Chen , Feng Zhu , Zhiqiang Liu , Peng Bao , Wei Shen , Sheng Tang . Detection of SARS-CoV-2 based on artificial intelligence-assisted smartphone: A review. Chinese Chemical Letters, 2024, 35(7): 109220-. doi: 10.1016/j.cclet.2023.109220
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Mengxing Liu , Jing Liu , Hongxing Zhang , Jianan Tao , Peiwen Fan , Xin Lv , Wei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994
Han Yuan , Fengcai Zhang , Hongzhe Huang , Jiafei Wu , Yi Yang , Wanyi Huang , Dongjing Yang , Zhuoming Li , Zhe Li , Ling Huang , Yi-You Huang , Hai-Bin Luo , Lei Guo . Discovery of 3-trifluoromethyl-substituted pyrazoles as selective phosphodiesterase 10A inhibitors for orally attenuating isoprenaline-induced cardiac hypertrophy. Chinese Chemical Letters, 2025, 36(4): 109965-. doi: 10.1016/j.cclet.2024.109965
Jia Chen , Yun Liu , Zerong Long , Yan Li , Hongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463
Meirong HAN , Xiaoyang WEI , Sisi FENG , Yuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Shuheng Zhang , Yuanyuan Zhang , Wanyu Wang , Yuzhu Hu , Xinchuan Chen , Bilan Wang , Xiang Gao . A combination strategy of DOX and VEGFR-2 targeted inhibitor based on nanomicelle for enhancing lymphoma therapy. Chinese Chemical Letters, 2024, 35(12): 109658-. doi: 10.1016/j.cclet.2024.109658
Yiling Li , Zekun Gao , Xiuxiu Yue , Minhuan Lan , Xiuli Zheng , Benhua Wang , Shuang Zhao , Xiangzhi Song . FRET-based two-photon benzo[a] phenothiazinium photosensitizer for fluorescence imaging-guided photodynamic therapy. Chinese Chemical Letters, 2024, 35(7): 109133-. doi: 10.1016/j.cclet.2023.109133
Linfang ZHANG , Wenzhu YIN , Gui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405
Chun-Lin Sun , Yaole Jiang , Yu Chen , Rongjing Guo , Yongwen Shen , Xinping Hui , Baoxin Zhang , Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Bo Liu , Shuaiqiang Shao , Junjie Cai , Zijian Zhang , Feng Tian , Kun Yang , Fan Li . Signal cascade amplification of streptavidin-biotin-modified immunofluorescence nanocapsules for ultrasensitive detection of glial fibrillary acidic protein. Chinese Chemical Letters, 2025, 36(3): 109814-. doi: 10.1016/j.cclet.2024.109814