Citation: Weibin Shen, Jie Liu, Gongyu Wen, Shuai Li, Binhui Yu, Shuangyu Song, Bojie Gong, Rongyang Zhang, Shibao Liu, Hongpeng Wang, Yao Wang, Yujing Liu, Huadong Yuan, Jianming Luo, Shihui Zou, Xinyong Tao, Jianwei Nai. Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction[J]. Chinese Chemical Letters, ;2025, 36(7): 110184. doi: 10.1016/j.cclet.2024.110184 shu

Formation of FeNi-based nanowire-assembled superstructures with tunable anions for electrocatalytic oxygen evolution reaction

Figures(4)

  • Anion modification has been considered as a strategy to improve water splitting efficiency upon oxygen evolution reaction (OER). However, constructing a novel catalysis system with high catalytic activity and precise structures is still a huge challenge due to the tedious procedure of precursor synthesis and anion selection. Here, a bimetallic (FeNi) nanowire self-assembled superstructure was synthesized using the Hoffmann rearrangement method, and then functionalized with four anions (P, Se, S, and O). Notably, the Fe3Se4/Ni3Se4 catalyst shows a high conductivity, enhances the adsorption of intermediate products, accelerates the rate-determining step, and consequently results to improved electrocatalytic performance. Using the Fe3Se4/Ni3Se4 catalyst exhibits enhanced performance with overpotential of 316 mV at 10 mA/cm2, in stark contrast to Fe2P/Ni2P (357 mV), Fe7S8/NiS (379 mV), and Fe3O4/NiO (464 mV). Moreover, the formation mechanism of superstructure and the relationship between electronegativities and electrocatalytic properties, are elucidated. Accordingly, this work provides an efficient approach to Hoffmann-type coordination polymer catalyst for oxygen evolution towards a near future.
  • 加载中
    1. [1]

      E. Kabir, P. Kumar, S. Kumar, et al., Renew. Sust. Energ. Rev. 82 (2018) 894–900.

    2. [2]

      P. Sadorsky, J. Clean Prod. 289 (2021) 125779.

    3. [3]

      B.Q. Lin, Z. Li, Appl. Energy 307 (2022) 118160.

    4. [4]

      J. Di, W. Jiang, Mater. Today. Catal. 1 (2023) 100001.

    5. [5]

      H. Ishaq, I. Dincer, C. Crawford, Int. J. Hydrog. Energy 47 (2022) 26238–26264.

    6. [6]

      M.D. Ji, J.L. Wang, Int. J. Hydrog. Energy 46 (2021) 38612–38635.

    7. [7]

      L.M. Cao, D. Lu, D.C. Zhong, et al., Coord. Chem. Rev. 407 (2020) 213156.

    8. [8]

      M. Chatenet, B.G. Pollet, D.R. Dekel, et al., Chem. Soc. Rev. 51 (2022) 4583–4762.  doi: 10.1039/d0cs01079k

    9. [9]

      W. Yang, S.W. Chen, Chem. Eng. J. 393 (2020) 124726.

    10. [10]

      E. Fabbri, A. Habereder, K. Waltar, et al., Catal. Sci. Technol. 4 (2014) 3800–3821.

    11. [11]

      X.H. Xie, L. Du, L.T. Yon, et al., Adv. Energy Mater. 32 (2022) 2110036.

    12. [12]

      Q. Wang, Y. Gong, X. Zi, et al., Angew. Chem. Int. Ed. 63 (2024) e202405438.  doi: 10.1002/anie.202405438

    13. [13]

      K. Xiao, Y. Wang, P. Wu, et al., Angew. Chem. Int. Ed. 62 (2023) e202301408.

    14. [14]

      J.H. Huang, Y.H. Xie, L. Yan, et al., Energy Environ. Sci. 14 (2021) 883–889.  doi: 10.1039/d0ee03639k

    15. [15]

      L.J. Zhang, H. Jang, H.H. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 18821–18829.  doi: 10.1002/anie.202106631

    16. [16]

      J.Y. Chen, P.X. Cui, G.Q. Zhao, et al., Angew. Chem. Int. Ed. 58 (2019) 12540–12544.  doi: 10.1002/anie.201907017

    17. [17]

      Y. Fu, H.Y. Yu, C. Jiang, et al., Adv. Funct. Mater. 28 (2018) 1705094.

    18. [18]

      H. Zhang, T. Gao, Q. Zhang, et al., Mater. Today. Catal. 3 (2023) 100013.

    19. [19]

      S. Guo, C. Chen, M. Qiu, et al., Mater. Today. Catal. 3 (2023) 100022.

    20. [20]

      Z.P. Wu, X.F. Lu, S.Q. Zang, et al., Adv. Energy Mater. 30 (2020) 1910274.

    21. [21]

      H. Xu, H.Y. Shang, C. Wang, et al., Coord. Chem. Rev. 418 (2020) 213374.

    22. [22]

      X. Long, J.K. Li, S. Xiao, et al., Angew. Chem. Int. Ed. 53 (2014) 7584–7588.  doi: 10.1002/anie.201402822

    23. [23]

      Q. Zhang, W. Xiao, H.C. Fu, et al., ACS Catal. 13 (2023) 14975–14986.  doi: 10.1021/acscatal.3c03804

    24. [24]

      J. Mohammed-Ibrahim, J. Power Sources 448 (2020) 227375.

    25. [25]

      W. Cao, X.H. Gao, J. Wu, et al., ACS Catal. 14 (2024) 3640–3646.  doi: 10.1021/acscatal.3c06180

    26. [26]

      M. Wang, Y.S. Chen, Z.B. Yu, et al., J. Colloid Interface Sci. 640 (2023) 1–14.

    27. [27]

      S. Kang, C. Im, I. Spanos, et al., Angew. Chem. Int. Ed. 61 (2022) e202214541.

    28. [28]

      H. Liao, X. Zhang, S. Niu, et al., Appl. Catal. B: Environ. 307 (2022) 121150.

    29. [29]

      H. Liao, T. Luo, P. Tan, et al., Adv. Energy Mater. 31 (2021) 2102772.

    30. [30]

      X.J. Li, H.K. Zhang, Q. Hu, et al., Angew. Chem. Int. Ed. 62 (2023) e202300478.

    31. [31]

      Y. Hao, X. Cao, C. Lei, et al., Mater. Today. Catal. 2 (2023) 100012.

    32. [32]

      H. Liao, G. Ni, P. Tan, et al., Adv. Mater. 35 (2023) 2300347.

    33. [33]

      L. Magnier, G. Cossard, V. Martin, et al., Nat. Mater. 23 (2024) 252–261.  doi: 10.1038/s41563-023-01744-5

    34. [34]

      J. Zhuang, D. Wang, Mater. Today. Catal. 2 (2023) 100009.

    35. [35]

      Z.K. Wang, Y.Y. Wang, N. Zhang, et al., J. Mater. Chem. A 10 (2022) 10342–10349.  doi: 10.1039/d2ta01931k

    36. [36]

      H. Yang, L.Q. Gong, H.M. Wang, et al., Nat. Commun. 11 (2020) 5075.

    37. [37]

      Y. Chen, B. Zhang, Y. Liu, et al., Mater. Today. Catal. 1 (2023) 100003.

    38. [38]

      S. Xie, H. Jin, C. Wang, et al., Chin. Chem. Lett. 34 (2023) 107681.

    39. [39]

      Q.C. Xu, H. Jiang, X.Z. Duan, et al., Nano Lett. 21 (2021) 492–499.  doi: 10.1021/acs.nanolett.0c03950

    40. [40]

      J.Y. Zou, X.F. Ren, New J. Chem. 47 (2023) 14408–14417.  doi: 10.1039/d3nj02351f

    41. [41]

      Y.K. Bai, Y. Wu, X.C. Zhou, et al., Nat. Commun. 13 (2022) 6094.

    42. [42]

      Y.C. Wu, Y.J. Wang, Z.W. Wang, et al., J. Mater. Chem. A 9 (2021) 23574–23581.  doi: 10.1039/d1ta06574b

    43. [43]

      Q. Jiang, S.H. Wang, C.R. Zhang, et al., Nat. Commun. 14 (2023) 6826.

    44. [44]

      J.W. Nai, X.Z. Xu, Q.F. Xie, et al., Adv. Mater. 34 (2022) 2104405.

    45. [45]

      P. Xiao, W. Chen, X. Wang, Adv. Energy Mater. 5 (2015) 1500985.

    46. [46]

      P.R. Chen, J.S. Ye, H. Wang, et al., J. Alloy. Compd. 883 (2021) 160833.

    47. [47]

      K. Chu, Y.P. Liu, Y.B. Li, et al., J. Mater. Chem. A 7 (2019) 4389–4394.  doi: 10.1039/c9ta00016j

    48. [48]

      X.X. Yu, Z.Y. Yu, X.L. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 7537–7543.  doi: 10.1021/jacs.9b02527

    49. [49]

      R. Boppella, J. Tan, W. Yang, et al., Adv. Energy Mater. 29 (2019) 1807976.

    50. [50]

      G.Y. Wen, X.P. Zhang, Y.L. Sui, et al., Chem. Eng. J. 430 (2022) 133041.

    51. [51]

      G.Y. Wen, Y.L. Sui, X.P. Zhang, et al., J. Colloid Interface Sci. 589 (2021) 208–216.

    52. [52]

      P. Guo, L. Shi, D. Liu, et al., Mater. Today. Catal. 1 (2023) 100002.

    53. [53]

      G. Zhong, S. Xu, B. Fang, Mater. Today. Catal. 4 (2024) 100045.

    54. [54]

      J. Chen, Q. Long, K. Xiao, et al., Sci. Bull. 66 (2021) 1063–1072.  doi: 10.1109/tcpmt.2021.3084966

    55. [55]

      J. Wei, K. Xiao, Y. Chen, et al., Energy Environ. Sci. 15 (2022) 4592–4600.  doi: 10.1039/d2ee02151j

    56. [56]

      H. Song, M. Wu, Z. Tang, et al., Angew. Chem. Int. Ed. 133 (2021) 7310–7320.  doi: 10.1002/ange.202017102

    57. [57]

      M.B.Z. Hegazy, F. Hassan, M. Hu, Small 20 (2023) 2306709.

    58. [58]

      T. Wang, Y. Wu, Y. Han, et al., ACS Appl. Nano Mater. 4 (2021) 14161–14168.  doi: 10.1021/acsanm.1c03619

    59. [59]

      R. Zhang, Z. Wu, Z. Huang, et al., Chin. Chem. Lett. 34 (2023) 107600.

    60. [60]

      J.Y. Li, Z.P. Ni, Z. Yan, et al., CrystEngComm 16 (2014) 6444–6449.

    61. [61]

      V. García-López, F. Marques-Moros, J. Troya, et al., J. Mater. Chem. C 12 (2023) 161–169.

    62. [62]

      M.B. Zakaria, E.Z.M. Ebeid, M.M. Abdel-Galeil, et al., New J. Chem. 41 (2017) 14890–14897.

    63. [63]

      H.F. Liu, S.Z. Cong, X.R. Yan, et al., J. Membr. Sci. 669 (2023) 121282.

    64. [64]

      V. Rubio-Giménez, G. Escorcia-Ariza, C. Bartual-Murgui, et al., Chem. Mat. 31 (2019) 7277–7287.  doi: 10.1021/acs.chemmater.9b01634

    65. [65]

      W. Wang, L. Li, J. Ouyang, et al., Chin. Chem. Lett. 34 (2023) 107597.

    66. [66]

      J. Chen, G. Qian, B. Chu, et al., Small 18 (2022) 2106773.

    67. [67]

      H. Li, C. Zhang, W. Xiang, et al., Chem. Eng. J 452 (2023) 139104.

    68. [68]

      B. Zhang, L. Wang, Z. Cao, et al., Nat. Catal. 3 (2020) 985–992.  doi: 10.1038/s41929-020-00525-6

    69. [69]

      J. Zhou, Y. Dou, T. He, et al., Nano Res. 14 (2021) 4548–4555.  doi: 10.1007/s12274-021-3370-7

  • 加载中
    1. [1]

      Qianqing XuQu JiangHaoyue ZhangFang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417

    2. [2]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Yukang Xiong Lin Lv Guokun Ma Hanbin Wang Houzhao Wan Hao Wang . Construction and structural evolution of heterostructured cobalt-iron alloys@phosphates as oxygen evolution electrocatalyst toward rechargeable Zn-air battery. Chinese Journal of Structural Chemistry, 2025, 44(11): 100699-100699. doi: 10.1016/j.cjsc.2025.100699

    5. [5]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    6. [6]

      Hao ZhangHao LiuKe HuangQingxiu XiaHongjie XiongXiaohui LiuHui JiangXuemei Wang . Ionic exchange based intracellular self-assembly of pitaya-structured nanoparticles for tumor imaging. Chinese Chemical Letters, 2025, 36(6): 110281-. doi: 10.1016/j.cclet.2024.110281

    7. [7]

      Shengxia YangYukang PanTianyu KongChaoran JiaYueyang CuiXuehua LiYannan ZhouHaijun LiuXinyu ZhangBin DongQunwei Tang . Ru and S co-modification-induced synergistic morphology and electronic engineering of nickel-iron hydroxide with efficient oxygen evolution. Chinese Chemical Letters, 2025, 36(12): 111540-. doi: 10.1016/j.cclet.2025.111540

    8. [8]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    9. [9]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    10. [10]

      Sumiya Akter Dristy Md Ahasan Habib Mehedi Hasan Joni Md Najibullah Rutuja Mandavkar Shusen Lin Jihoon Lee . Binder-free bimetallic vanadium-nickel-boride-phosphide spherical structure for highly efficient and stable industrial-level water splitting. Chinese Journal of Structural Chemistry, 2025, 44(12): 100747-100747. doi: 10.1016/j.cjsc.2025.100747

    11. [11]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    12. [12]

      Lin ZhangJianlong LiMaoyuan HuYao XuXiaoli XiongZhaoyu Jin . MOF-derived beaded stream-like nitrogen and phosphorus-codoped carbon-coated Fe3O4 nanocomposites via lattice-oxygen-mediated mechanism for efficient water oxidation. Chinese Chemical Letters, 2025, 36(8): 111123-. doi: 10.1016/j.cclet.2025.111123

    13. [13]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    14. [14]

      Zhongjie SongNannan ZhangJun YuHuiyu SunZhengying WuYukou Du . Growth of Ce-doped NiCo-LDHs on tin dioxide-modified nickel foam as oxygen evolution reaction catalyst electrode. Chinese Chemical Letters, 2026, 37(1): 111804-. doi: 10.1016/j.cclet.2025.111804

    15. [15]

      Shanru Feng Ling Wen Li Zhang Qinyu Jiang Bozhao Zhang Guohao Wu Yue Wu Jiabin Chen Youcai Han Chuhao Liu Yu-Wu Zhong Jiannian Yao . Magnetic field controlled electrocatalysis from a multidimensional catalytic perspective: Mechanisms, applications, and prospects for energy conversion. Chinese Journal of Structural Chemistry, 2025, 44(11): 100662-100662. doi: 10.1016/j.cjsc.2025.100662

    16. [16]

      Cui Luo Peng-Hui Li Wei-Ming Liao Qia-Chun Lin Xiao-Xiang Zhou Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621

    17. [17]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    18. [18]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    19. [19]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    20. [20]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

Metrics
  • PDF Downloads(1)
  • Abstract views(1054)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return