Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow
-
* Corresponding author.
E-mail address: happytw_3000@nwpu.edu.cn (W. Tian).
Citation:
Shuai Qiu, Jia He, Xiao Hu, Hongxia Yan, Zhao Gao, Wei Tian. Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow[J]. Chinese Chemical Letters,
;2025, 36(4): 110057.
doi:
10.1016/j.cclet.2024.110057
T. Förster, Naturwissenschaften 6 (1946) 166–175.
L. Wu, C. Huang, B.P. Emery, et al., Chem. Soc. Rev. 49 (2020) 5110–5139.
doi: 10.1039/c9cs00318e
A.J.P. Teunissen, C.P. Medina, A. Meijerink, et al., Chem. Soc. Rev. 47 (2018) 7027–7044.
doi: 10.1039/c8cs00278a
L. Mendive-Tapia, M. Vendrell, Acc. Chem. Res. 55 (2022) 1183–1193.
doi: 10.1021/acs.accounts.2c00070
X. Wang, Z. Gao, W. Tian, Chin. Chem. Lett. 35 (2024) 109757.
doi: 10.1016/j.cclet.2024.109757
Y. Li, C. Xia, R. Tian, et al., ACS Nano 16 (2022) 8012–8021.
doi: 10.1021/acsnano.2c00960
P. Jia, Y. Hu, Z. Zeng, Y. Wang, et al., Chin. Chem. Lett. 34 (2023) 107511.
doi: 10.1016/j.cclet.2022.05.025
C. Lin, P. Han, S. Xiao, et al., Adv. Funct. Mater. 31 (2021) 2106912.
doi: 10.1002/adfm.202106912
A. Cravcenco, M. Hertzog, C. Ye, et al., Sci. Adv. 5 (2019) eaaw5978.
doi: 10.1126/sciadv.aaw5978
Y. Zhao, L. Ma, Z. Huang, et al., Adv. Optical Mater. 10 (2022) 2102701.
doi: 10.1002/adom.202102701
Y. Tian, J. Yang, Z. Liu, et al., Angew. Chem. Int. Ed. 60 (2021) 20259–20263.
doi: 10.1002/anie.202107639
M. Kanakubo, Y. Yamamoto, Y. Kubo, Bull. Chem. Soc. Jpn. 94 (2021) 1204–1209.
doi: 10.1246/bcsj.20210004
Y.Y. Hu, X.Y. Dai, X. Dong, et al., Angew. Chem. Int. Ed. 61 (2022) e202213097.
doi: 10.1002/anie.202213097
X. Cui, W. Shi, C. Lu, J. Phys. Chem. A 125 (2021) 4209–4215.
doi: 10.1021/acs.jpca.1c00569
F. Lin, H. Wang, Y. Cao, et al., Adv. Mater. 34 (2022) 2108333.
doi: 10.1002/adma.202108333
S. Kuila, S.J. Georg, Angew. Chem. Int. Ed. 59 (2020) 9393–9397.
doi: 10.1002/anie.202002555
S. Garain, B.C. Garain, M. Eswaramoorthy, et al., Angew. Chem. Int. Ed. 60 (2021) 19720–19724.
doi: 10.1002/anie.202107295
R. Gao, D. Yan, Chem. Sci. 8 (2017) 590–599.
doi: 10.1039/C6SC03515A
Y. Mu, B. Xu, Z. Yang, et al., ACS Appl. Mater. Interfaces 12 (2020) 5073–5080.
doi: 10.1021/acsami.9b19919
A. Cravcenco, C. Ye, J. Gräfenstein, et al., J. Phys. Chem. A 124 (2022) 7219–7227.
F.F. Shen, Y. Chen, X. Dai, et al., Chem. Sci. 12 (2021) 1851–1857.
doi: 10.1039/d0sc05343k
M. Huo, X.Y. Dai, Y. Liu, Adv. Sci. 9 (2022) 2201523.
doi: 10.1002/advs.202201523
H. Gui, Z. Huang, Z. Yuan, et al., CCS Chem. 3 (2021) 481–489.
X. Zhong, T. Chervy, S. Wang, et al., Angew. Chem. Int. Ed. 55 (2016) 6202–6206.
doi: 10.1002/anie.201600428
D. Dovzhenko, M. Lednev, K. Mochalov, et al., Chem. Sci. 12 (2021) 12794–12805.
doi: 10.1039/d1sc02026a
O. Erdem, K. Gungor, B. Guzelturk, et al., Nano Lett. 19 (2019) 4297–4305.
doi: 10.1021/acs.nanolett.9b00681
A. Iqbal, S. Arslan, B. Okumus, et al., Proc. Natl. Acad. Sci. U. S. A. 105 (2008) 11176–11181.
doi: 10.1073/pnas.0801707105
G. Jiang, J. Yu, J. Wang, et al., Aggregate 3 (2022) e285.
doi: 10.1002/agt2.285
S. Garain, S.M. Wagalgave, A.A. Kongasseri, et al., J. Am. Chem. Soc. 144 (2022) 10854–10861.
doi: 10.1021/jacs.2c02678
H.T. Chifotides, K.R. Dunbar, Acc. Chem. Res. 46 (2013) 894–906.
doi: 10.1021/ar300251k
X. Xiao, H. Chen, X. Dong, et al., Mater. Chem. Front. 6 (2022) 3261–3270.
doi: 10.1039/d2qm00646d
Z. Gao, L. Shi, F. Yan, et al., Angew. Chem. Int. Ed. 62 (2023) e202302274.
doi: 10.1002/anie.202302274
H. Huo, X. Xiao, L. Chang, et al., Sci. China Chem. 66 (2023) 2070–2082.
doi: 10.1007/s11426-023-1611-7
G. Zhao, H. Zhu, Adv. Mater. 32 (2020) 1905756.
J. Kang, J. Yu, A. Li, et al., iScience 15 (2019) 119–126.
doi: 10.7465/jkdi.2019.30.1.119
A. Turupcu, J. Tirado-Rives, W.L. Jorgensen, J. Chem. Theory Comput. 16 (2020) 7184–7194.
doi: 10.1021/acs.jctc.0c00847
X. Xiao, H. Chen, X. Dong, et al., Angew. Chem. Int. Ed. 59 (2020) 9534–9541.
doi: 10.1002/anie.202000255
W.C. Geng, Z. Ye, Z. Zheng, et al., Angew. Chem. Int. Ed. 60 (2021) 19614–19619.
doi: 10.1002/anie.202104358
R.G. Bennett, R.P. Schwenker, R.E. Kellogg, J. Chem. Phys. 41 (1964) 3040–3041.
doi: 10.1063/1.1725671
P.P. Jia, L. Xu, Y.X. Hu, et al., J. Am. Chem. Soc. 143 (2021) 399–408.
doi: 10.1021/jacs.0c11370
L. Wu, C. Huang, B.P. Emery, et al., Chem. Soc. Rev. 49 (2020) 5110–5139.
doi: 10.1039/C9CS00318E
H. Liu, H. Fu, X. Shao, et al., J. Chem. Theory Comput. 16 (2020) 6397–6407.
doi: 10.1021/acs.jctc.0c00637
B. Zhou, Z. Qi, M. Dai, et al., Angew. Chem. Int. Ed. 62 (2023) e202309913.
T. Wang, M. Liu, J. Mao, et al., Chin. Chem. Lett. 35 (2024) 108385.
doi: 10.1016/j.cclet.2023.108385
L. Zheng, K. Jiang, J. Du, et al., Chin. Chem. Lett. 34 (2023) 107950.
C. Xing, B. Zhou, D. Yan, et al., CCS Chem. 5 (2023) 2866–2876.
doi: 10.31635/ccschem.023.202202605
C. Xing, Z. Qi, B. Zhou, et al., Angew. Chem. Int. Ed. (2024) e202402634.
C. Xing, B. Zhou, D. Yan, et al., Adv. Sci. 11 (2024) 2310262.
Y. Wu, X. Fang, J. Shi, et al., Chin. Chem. Lett. 32 (2021) 3907–3910.
X. Wang, Z. Chen, J. Yin, et al., Chin. Chem. Lett. 33 (2022) 2522–2526.
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Xiaoyao Ma , Jinling Zhang , Ge Fang , He Gao , Jie Gao , Li Fu , Yuanyuan Hou , Gang Bai . Förster resonance energy transfer reveals phillygenin and swertiamarin concurrently target AKT on different binding domains to increase the anti-inflammatory effect. Chinese Chemical Letters, 2024, 35(5): 108823-. doi: 10.1016/j.cclet.2023.108823
Chi Li , Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324
Saisai Yuan , Yiming Chen , Xijuan Wang , Degui Zhao , Tengyang Gao , Caiyun Wei , Chuanxiang Chen , Yang Yang , Wenjing Hong . Decouple the intermolecular interaction by encapsulating an insulating sheath. Chinese Chemical Letters, 2025, 36(6): 110816-. doi: 10.1016/j.cclet.2025.110816
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
Wenya Chi , Ruiyao Liu , Wenbo Zhou , Weilin Li , Yuan Yu . The mechanisms of interaction between biomaterials and cells/cellular microenvironment and the applications in neural injuries. Chinese Chemical Letters, 2025, 36(8): 110587-. doi: 10.1016/j.cclet.2024.110587
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Zhaorui Song , Qiulian Hao , Bing Li , Yuwei Yuan , Shanshan Zhang , Yongkuan Suo , Hai-Hao Han , Zhen Cheng . NIR-Ⅱ fluorescence lateral flow immunosensor based on efficient energy transfer probe for point-of-care testing of tumor biomarkers. Chinese Chemical Letters, 2025, 36(1): 109834-. doi: 10.1016/j.cclet.2024.109834
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
Yanyu Jin , Wenzhe Si , Xing Yuan , Hongjun Cheng , Bin Zhou , Li Cai , Yu Wang , Qibao Wang , Junhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260
Ruofan Qi , Jing Zhang , Wang Sun , Bai Yu , Zhenhua Wang , Kening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009
Doudou Liu , Weiwei Guo , Guoliang Mei , Youpeng Dan , Rong Yang , Chao Huang , Yanling Zhai , Xiaoquan Lu . Application of catalyst Cu-t-ZrO2 based on the electronic metal-support interaction in electrocatalytic nitrate reduction. Chinese Chemical Letters, 2025, 36(8): 110578-. doi: 10.1016/j.cclet.2024.110578
Huipeng Li , Xue Yang , Minjie Sun . Self-strengthened cascade-explosive nanogel using host-guest interaction strategy for synergistic tumor treatment. Chinese Chemical Letters, 2025, 36(8): 110651-. doi: 10.1016/j.cclet.2024.110651
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Ran Zhu , Pan Zhang , Yitong Xu , Jiutong Ma , Qiong Jia . Design of host-guest interaction based molecularly imprinted polymers: Targeting recognition of the epitope of neuron-specific enolase via a SERS assay. Chinese Chemical Letters, 2025, 36(6): 110259-. doi: 10.1016/j.cclet.2024.110259
Siwei Wang , Wei-Lei Zhou , Yong Chen . Cucurbituril and cyclodextrin co-confinement-based multilevel assembly for single-molecule phosphorescence resonance energy transfer behavior. Chinese Chemical Letters, 2024, 35(12): 110261-. doi: 10.1016/j.cclet.2024.110261
Zenggang Lin , Peng Zhang , Yuzhu Yang , Weisheng Liu . Multilevel stimulus-responsive smart organic afterglow materials beyond crystal limitations: Aqueous-phase dual emission afterglow and upconversion afterglow under ultra-wide range excitation. Chinese Chemical Letters, 2025, 36(9): 111194-. doi: 10.1016/j.cclet.2025.111194