Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes
-
* Corresponding author.
E-mail address: jiaozhw@mail.sysu.edu.cn (Z. Jiao).
Citation:
Yunqiang Li, Yongxian Huang, Sinuo Li, He Huang, Zhiwei Jiao. Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes[J]. Chinese Chemical Letters,
;2025, 36(4): 110051.
doi:
10.1016/j.cclet.2024.110051
J.J. Li, Heterocyclic Chemistry in Drug Discovery, Wiley, Hoboken, 2013, pp. 1–720.
S.D. Roughley, A.M. Jordan, J. Med. Chem. 54 (2011) 3451–3479.
doi: 10.1021/jm200187y
M.A. Chiacchio, D. Iannazzo, R. Romeo, S.V. Giofrè, L. Legnani, Curr. Med. Chem. 26 (2019) 7166–7195.
Y. Ling, Z.Y. Hao, D. Liang, et al., Drug Des. Dev. Ther. 15 (2021) 4289–4338.
doi: 10.2147/dddt.s329547
J.J. Gladfelder, S. Ghosh, M. Podunavac, et al., J. Am. Chem. Soc. 141 (2019) 15024–15028.
doi: 10.1021/jacs.9b08659
J.D. Weaver, A. Recio Ⅲ, A.J. Grenning, J.A. Tunge, Chem. Rev. 111 (2011) 1846–1913.
doi: 10.1021/cr1002744
B.M. Trost, Tetrahedron 71 (2015) 5708–5733.
doi: 10.1016/j.tet.2015.06.044
S. Dutta, T. Bhattacharya, D.B. Werz, D. Maiti, Chem 7 (2021) 555–605.
J.A. Tunge, Isr. J. Chem. 60 (2020) 351–359.
doi: 10.1002/ijch.201900177
B.M. Trost, D.A. Thaisrivongs, J. Am. Chem. Soc. 130 (2008) 14092–14093.
doi: 10.1021/ja806781u
B.M. Trost, D.A. Thaisrivongs, J. Am. Chem. Soc. 131 (2009) 12056–12057.
doi: 10.1021/ja904441a
Z.T. He, X. Jiang, J.F. Hartwig, J. Am. Chem. Soc. 141 (2019) 13066–13073.
doi: 10.1021/jacs.9b04440
X.J. Liu, S. Jin, W.Y. Zhang, et al., Angew. Chem. Int. Ed. 59 (2020) 2039–2043.
doi: 10.1002/anie.201912882
B.M. Trost, D.A. Thaisrivongs, J. Hartwig, J. Am. Chem. Soc. 133 (2011) 12439–12441.
doi: 10.1021/ja205523e
S.C. Sha, J. Zhang, P.J. Carroll, P.J. Walsh, J. Am. Chem. Soc. 135 (2013) 17602–17609.
doi: 10.1021/ja409511n
S.C. Sha, H. Jiang, J. Mao, et al., Angew. Chem. Int. Ed. 55 (2016) 1070–1074.
doi: 10.1002/anie.201507494
R. Murakami, K. Sano, T. Iwai, et al., Angew. Chem. Int. Ed. 57 (2018) 9465–9469.
doi: 10.1002/anie.201802821
X.J. Liu, S.L. You, Angew. Chem. Int. Ed. 56 (2017) 4002–4005.
doi: 10.1002/anie.201700433
P. Zhang, J. Wang, Z.R. Robertson, T.R. Newhouse, Angew. Chem. Int. Ed. 61 (2022) e202200602.
X.J. Liu, C. Zheng, Y.H. Yang, S. Jin, S.L. You, Angew. Chem. Int. Ed. 58 (2019) 10493–10499.
doi: 10.1002/anie.201904156
N. Wasfy, F. Rasheed, R. Robidas, et al., Chem. Sci. 12 (2021) 1503–1512.
doi: 10.1039/d0sc03304a
R.K. Dhungana, S. Kc, P. Basnet, R. Giri, Chem. Record 18 (2018) 1314–1340.
doi: 10.1002/tcr.201700098
L.M. Wickham, R. Giri, Acc. Chem. Res. 54 (2021) 3415–3437.
doi: 10.1021/acs.accounts.1c00329
B. Tian, P. Chen, G. Liu, Synlett 33 (2022) 927–938.
doi: 10.1055/s-0040-1719898
J.H. Xie, C. Zheng, S.L. You, Angew. Chem. Int. Ed. 60 (2021) 22184–22188.
doi: 10.1002/anie.202107139
K. Aoyagi, H. Nakamura, Y. Yamamoto, J. Org. Chem. 67 (2002) 5977–5980.
doi: 10.1021/jo025747h
P. Tian, C.Q. Wang, S.H. Cai, et al., J. Am. Chem. Soc. 138 (2016) 15869–15872.
doi: 10.1021/jacs.6b11205
A.L. Gant Kanegusuku, J.L. Roizen, Angew. Chem. Int. Ed. 60 (2021) 21116–21149.
doi: 10.1002/anie.202016666
M.W. Campbell, J.S. Compton, C.B. Kelly, G.A. Molander, J. Am. Chem. Soc. 141 (2019) 20069–20078.
doi: 10.1021/jacs.9b08282
L. Pitzer, J.L. Schwarz, F. Glorius, Chem. Sci. 10 (2019) 8285–8291.
doi: 10.1039/c9sc03359a
R.J. Wiles, G.A. Molander, Isr. J. Chem. 60 (2020) 281–293.
doi: 10.1002/ijch.201900166
K. Donabauer, B. König, Acc. Chem. Res. 54 (2021) 242–252.
doi: 10.1021/acs.accounts.0c00620
Y. Shen, Z.Y. Dai, C. Zhang, P.S. Wang, ACS Catal. 11 (2021) 6757–6762.
doi: 10.1021/acscatal.1c01500
D. Imao, A. Itoi, A. Yamazaki, et al., J. Org. Chem. 72 (2007) 1652–1658.
doi: 10.1021/jo0621569
S. Oliver, P.A. Evans, Synthesis 45 (2013) 3179–3198.
Y. Wang, J. Chen, J. Yang, Z. Jiao, C.Y. Su, Angew. Chem. Int. Ed. 62 (2023) e202303288.
B.M. Trost, Z. Jiao, H. Gholami, Chem. Sci. 12 (2021) 10532–10537.
doi: 10.1039/d1sc02599f
J.P. Phelan, S.B. Lang, J.S. Compton, et al., J. Am. Chem. Soc. 140 (2018) 8037–8047.
doi: 10.1021/jacs.8b05243
F.D. Lu, G.F. He, L.Q. Lu, W.J. Xiao, Green Chem. 23 (2021) 5379–5393.
doi: 10.1039/d1gc00993a
Y.J. Zhang, H. Wang, D.D. Jiang, et al., Green Synth. Catal. 5 (2024) 35–41.
B. Giese, Angew. Chem. Int. Ed. 22 (1983) 753–764.
Y.L. Yin, Y.T. Dai, H.S. Jia, et al., J. Am. Chem. Soc. 140 (2018) 6083–6087.
doi: 10.1021/jacs.8b01575
K. Cao, S.M. Tan, R. Lee, et al., J. Am. Chem. Soc. 141 (2019) 5437–5443.
doi: 10.1021/jacs.9b00286
Y.L. Yin, Y.Q. Li, T.P. Gonçalves, et al., J. Am. Chem. Soc. 142 (2020) 19451–19456.
doi: 10.1021/jacs.0c08329
M. Kong, Y. Tan, X. Zhao, et al., J. Am. Chem. Soc. 143 (2021) 4024–4031.
doi: 10.1021/jacs.1c01073
X. Chai, X. Hu, X. Zhao, et al., Angew. Chem. Int. Ed. 61 (2022) e202115110.
L. Song, D.M. Fu, L. Chen, et al., Angew. Chem. Int. Ed. 59 (2020) 21121–21128.
doi: 10.1002/anie.202008630
A. Studer, Angew. Chem. Int. Ed. 51 (2012) 8950–8958.
doi: 10.1002/anie.201202624
S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320–330.
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492 (2012) 234–238.
doi: 10.1038/nature11687
J. Luo, J. Zhang, ACS Catal. 6 (2016) 873–877.
doi: 10.1021/acscatal.5b02204
N. Meng, Y. Lv, Q. Liu, et al., Chin. Chem. Lett. 32 (2021) 258–262.
doi: 10.1016/j.cclet.2020.11.034
B.M. Trost, T.M. Lam, J. Am. Chem. Soc. 134 (2012) 11319–11321.
doi: 10.1021/ja305717r
R. Abrams, J. Clayden, Angew. Chem. Int. Ed. 59 (2020) 11600–11606.
doi: 10.1002/anie.202003632
A.E. Goetz, N.K. Garg, Nat. Chem. 5 (2013) 54–60.
doi: 10.1038/nchem.1504
J. Choi, G. Laudadio, E. Godineau, P.S. Baran, J. Am. Chem. Soc. 143 (2021) 11927–11933.
doi: 10.1021/jacs.1c05278
G. Scapin, S.B. Patel, J.W. Becker, et al., Biochemistry 42 (2003) 11451–11459.
doi: 10.1021/bi035098j
A.L. Rodd, K. Ververis, T.C. Karagiannis, Clin. Med. Insights Oncol. 6 (2012) 305–314.
M. Kljajic, J.G. Puschnig, H. Weber, R. Breinbauer, Org. Lett. 19 (2017) 126–129.
doi: 10.1021/acs.orglett.6b03407
W. Zhang, X.X. Xiang, J. Chen, et al., Nat. Commun. 11 (2020) 638.
doi: 10.1007/978-3-030-43309-3_92
S.B. Lang, K.M. O’Nele, J.A. Tunge, J. Am. Chem. Soc. 136 (2014) 13606–13609.
doi: 10.1021/ja508317j
H.H. Zhang, J.J. Zhao, S. Yu, J. Am. Chem. Soc. 140 (2018) 16914–16919.
doi: 10.1021/jacs.8b10766
W. Zhou, Y. Jiang, L. Chen, K. Liu, D. Yu, Chin. J. Org. Chem. 40 (2020) 3697–3713.
doi: 10.6023/cjoc202004045
E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.
doi: 10.1021/jm501100b
Y. Yasu, T. Koike, M. Akita, Adv. Synth. Catal. 354 (2012) 3414–3420.
doi: 10.1002/adsc.201200588
G.A. Molander, J. Org. Chem. 80 (2015) 7837–7848.
doi: 10.1021/acs.joc.5b00981
J. Wang, X. Liu, Z. Wu, et al., Chin. Chem. Lett. 32 (2021) 2777–2781.
doi: 10.1016/j.cclet.2021.03.011
D.M. Kitcatt, S. Nicolle, A.L. Lee, Chem. Soc. Rev. 51 (2022) 1415–1453.
doi: 10.1039/d1cs01168e
S. Jana, Z. Yang, F. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 5562–5566.
doi: 10.1002/anie.201915161
W.M. Cheng, R. Shang, H.Z. Yu, Y. Fu, Chem. Eur. J. 21 (2015) 13191–13195.
doi: 10.1002/chem.201502286
H.S. Tan, A.S. Habib, J. Pain Res. 14 (2021) 969–979.
doi: 10.2147/jpr.s278279
E.R. Viscusi, F. Skobieranda, D.G. Soergel, et al., J. Pain Res. 12 (2019) 927–943.
doi: 10.2147/jpr.s171013
X.T. Chen, P. Pitis, G. Liu, et al., J. Med. Chem. 56 (2013) 8019–8031.
doi: 10.1021/jm4010829
D. Yamashita, D. Gotchev, P. Pitis, et al., Patent, WO2012129495 A1, 2012.
J.D. Violin, D.G. Soergel, Patent, WO2017106547 A1, 2017.
Yusong Bi , Rongzhen Zhang , Kaikai Niu , Shengsheng Yu , Hui Liu , Lingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Tianzhu Qin , Weiwei Zi . Palladium-catalyzed enantioselective [2σ + 2π] cycloadditions of vinyl-carbonyl-bicyclo[1.1.0]butanes with arylidenemalononitriles. Chinese Chemical Letters, 2026, 37(1): 111072-. doi: 10.1016/j.cclet.2025.111072
Pei Xu , Tian-Zi Hao , Zhi-Tao Liu , Yi-Qin Liu , Hui-Xian Jiang , Dong Guo , Xu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899
Tingting Zhang , Jing Zhang . Photocatalyzed hydrogen transfer enabled three-component radical cascade reactions: Direct access to thioesters from primary alcohols, elemental sulfur and alkenes. Chinese Chemical Letters, 2026, 37(1): 111131-. doi: 10.1016/j.cclet.2025.111131
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
Shuhong Wu , Wanying Han , Ying Wang , Yan Zhuang , Hui Niu , Lurong Li , Junhui Wang , Yuan Liu , Huan Lin , Kaifeng Wu , Jinni Shen , Yingguang Zhang , Michael K. H. Leung , Jinlin Long . Close π-π stacking facilitated intermolecular charge separation in self-assembled perylene monoimide for photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(6): 100592-100592. doi: 10.1016/j.cjsc.2025.100592
Cui Luo , Peng-Hui Li , Wei-Ming Liao , Qia-Chun Lin , Xiao-Xiang Zhou , Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621
Chao Wei , Zi-Yi Zhao , Jing-Jing Li , Jinli Zhang , Ming Lu , Xiao-Qin Liu , Guoliang Liu , Jiandong Pang , Lin-Bing Sun . Topology guided construction of MOF by linking Zr-MOLs with perylene diimide motifs for photocatalytic oxidation. Chinese Journal of Structural Chemistry, 2025, 44(8): 100625-100625. doi: 10.1016/j.cjsc.2025.100625
Na Lu , Tingting Pang , Xuedong Jing , Yongan Zhu , Linqun Yu , Sining Ben , Yuchan Song , Shiwen Du , Wei Lu , Zhenyi Zhang . Optimizing the Schottky Barrier in AuAg Alloy Decorated TiO2 Nanofibers to Enhance Hot-Electron-Induced CO2 Reduction. Chinese Journal of Structural Chemistry, 2025, 44(8): 100633-100633. doi: 10.1016/j.cjsc.2025.100633
Anna Dai , Zhenxiong Huang , Li Tian , Zheng Zhang , Xiangjiu Guan , Liejin Guo . Polymeric Carbon Nitride for Photocatalytic Overall Water Splitting: Modification Strategies and Recent Advances. Chinese Journal of Structural Chemistry, 2025, 44(8): 100630-100630. doi: 10.1016/j.cjsc.2025.100630