A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries
-
* Corresponding authors.
E-mail addresses: suny@hfut.edu.cn (Y. Sun), hfxiang@hfut.edu.cn (H. Xiang).
Citation:
Run Chai, Qiujie Wu, Yongchao Liu, Xiaohui Song, Xuyong Feng, Yi Sun, Hongfa Xiang. A 3D dual layer host with enhanced sodiophilicity as stable anode for high-energy sodium metal batteries[J]. Chinese Chemical Letters,
;2025, 36(6): 110007.
doi:
10.1016/j.cclet.2024.110007
J.B. Goodenough, K.S. Park, J. Am. Chem. Soc. 135 (2013) 1167–1176.
doi: 10.1021/ja3091438
D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 12 (2017) 194–206.
doi: 10.1038/nnano.2017.16
H.S. Hirsh, Y. Li, D.H.S. Tan, et al., Adv. Energy Mater. 10 (2020) 2001274.
doi: 10.1002/aenm.202001274
M. Su, Y. Chen, S. Wang, et al., Chin. Chem. Lett. 34 (2023) 107553.
doi: 10.1016/j.cclet.2022.05.067
X. Jin, Y. Li, S. Zhang, J. Zhang, et al., Chin. Chem. Lett. 33 (2022) 491–496.
doi: 10.1016/j.cclet.2021.06.090
B. Lee, E. Paek, D. Mitlin, S.W. Lee, Chem. Rev. 119 (2019) 5416–5460.
doi: 10.1021/acs.chemrev.8b00642
S.J. Yang, J.K. Hu, F.N. Jiang, et al., eTransportation 18 (2023) 100279.
doi: 10.1016/j.etran.2023.100279
H. Wang, D. Yu, C. Kuang, et al., Chem 5 (2019) 313–338.
doi: 10.1016/j.chempr.2018.11.005
H. Wang, E. Matios, J. Luo, W. Li, Chem. Soc. Rev. 49 (2020) 3783–3805.
doi: 10.1039/d0cs00033g
W. Liu, Y. Xia, W. Wang, et al., Adv. Energy Mater. 9 (2019) 1970007.
doi: 10.1002/aenm.201970007
Y. Wang, Y. Wang, Y.X. Wang, et al., Chem 5 (2019) 2547–2570.
doi: 10.1016/j.chempr.2019.05.026
H. Wang, C. Wang, E. Matios, W. Li, Angew. Chem. 130 (2018) 7860–7863.
doi: 10.1002/ange.201801818
J. Ma, X. Feng, Y. Wu, et al., J. Energy Chem. 77 (2023) 290–299.
doi: 10.1016/j.jechem.2022.09.040
Q. Zhong, B. Liu, B. Yang, et al., Chin. Chem. Lett. 32 (2021) 3496–3500.
doi: 10.1016/j.cclet.2021.03.069
M. Zhu, G. Wang, X. Liu, et al., Angew. Chem. 132 (2020) 6658–6662.
doi: 10.1002/ange.201916716
S. Zhang, B. Cheng, Y Fang, et al., Chin. Chem. Lett. 33 (2022) 3951–3954.
doi: 10.1016/j.cclet.2021.11.024
X.B. Cheng, S.J. Yang, Z. Liu, et al., Adv. Mater. 36 (2024) 2307370.
doi: 10.1002/adma.202307370
H Gao, S Xin, L Xue, J. B Goodenough, Chem 4 (2018) 833–844.
L. Lin, L. Suo, Y.S. Hu, et al., Adv. Energy Mater. 11 (2021) 2003709.
doi: 10.1002/aenm.202003709
L. Ye, M. Liao, T. Zhao, et al., Angew. Chem. 131 (2019) 17210–17216.
doi: 10.1002/ange.201910202
Y. Xu, C. Wang, E. Matios, et al., Adv. Energy Mater. 10 (2020) 2002308.
doi: 10.1002/aenm.202002308
X. Chen, Y.K. Bai, X. Shen, et al., J. Energy Chem. 51 (2020) 1–6.
doi: 10.1016/j.jechem.2020.03.051
S. Tang, Z. Qiu, X.Y. Wang, et al., Nano Energy 48 (2018) 101–106.
doi: 10.1016/j.nanoen.2018.03.039
R. Zhuang, X. Zhang, C. Qu, et al., Sci. Adv. 9 (2023) eadh8060.
doi: 10.1126/sciadv.adh8060
Y. Liu, Y. Zhen, T. Li, et al., Small 16 (2020) 2004770.
doi: 10.1002/smll.202004770
G. Wang, Y. Zhang, B. Guo, et al., Nano Lett. 20 (2020) 4464–4471.
doi: 10.1021/acs.nanolett.0c01257
K.B. Hatzell, ACS Energy Lett. 11 (2023) 4775–4776.
doi: 10.1021/acsenergylett.3c02163
J. Lee, S.H. Jeong, J.S. Nam, et al., EcoMat (2023) e12416.
W. Liu, Z. Chen, Z. Zhang, et al., Energy Environ. Sci. 14 (2021) 16472.
P. Albertus, S. Babinec, S. Litzelman, A. Newman, Nature Energy 3 (2018) 16–21.
W. Liu, P. Liu, D. Mitlin, Adv. Energy Mater. 10 (2020) 2002297.
doi: 10.1002/aenm.202002297
W. Liu, Y. Luo, Y. Hu, et al., Adv. Energy Mater. 14 (2024) 2302261.
doi: 10.1002/aenm.202302261
K. Lee, Y.J. Lee, M.J. Lee, et al., Adv. Mater. 34 (2022) 2109767.
doi: 10.1002/adma.202109767
B. Sun, P. Li, J. Zhang, et al., Adv. Mater. 30 (2018) 1801334.
doi: 10.1002/adma.201801334
S Tas, O Kaynan, E Ozden-Yenigun, K Nijmeijer, RSC Adv. 6 (2016) 3608–3616.
doi: 10.1039/C5RA23214G
B.D. Adams, J. Zheng, X. Ren, et al., Adv. Energy Mater. 8 (2018) 1702097.
doi: 10.1002/aenm.201702097
Z. Sun, Y. Ye, J. Zhu, et al., Small 18 (2022) 2107199.
doi: 10.1002/smll.202107199
Z. Zhang, L. Li, Z. Zhu, et al., Energy Storage Mater. 53 (2022) 363–370.
doi: 10.1016/j.ensm.2022.09.015
J. Zhang, S. Wang, W. Wang, B. Li, J. Energy Chem. 66 (2022) 133–139.
doi: 10.1016/j.jechem.2021.07.022
Y. Liu, X. Liu, G. Zhang, et al., ACS Appl. Mater. Interfaces 15 (2023) 26691–26699.
doi: 10.1021/acsami.3c03056
B. Liu, D. Lei, J. Wang, et al., Nano Res. 13 (2020) 2136–2142.
doi: 10.1007/s12274-020-2820-y
Z. Li, H. Qin, W. Tian, et al., Adv. Funct. Mater. 29 (2024) 2301554.
L. Zhao, Z. Hu, Z. Huang, et al., Adv. Energy Mater. 12 (2022) 2200990.
doi: 10.1002/aenm.202200990
S. Wu, J. Hwang, K. Matsumoto, R. Hagiwara, Adv. Energy Mater. 13 (2023) 2302468.
doi: 10.1002/aenm.202302468
Changyuan Bao , Yunpeng Jiang , Haoyin Zhong , Huaizheng Ren , Junhui Wang , Binbin Liu , Qi Zhao , Fan Jin , Yan Meng Chong , Jianguo Sun , Fei Wang , Bo Wang , Ximeng Liu , Dianlong Wang , John Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353
Shuo Zhang , Haitao Liao , Zhi-Qun Liu , Chong Yan , Jia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
Huanyan Liu , Jiajun Long , Hua Yu , Shichao Zhang , Wenbo Liu . Rational design of highly conductive and stable 3D flexible composite current collector for high performance lithium-ion battery electrodes. Chinese Chemical Letters, 2025, 36(3): 109712-. doi: 10.1016/j.cclet.2024.109712
Jun Dong , Senyuan Tan , Sunbin Yang , Yalong Jiang , Ruxing Wang , Jian Ao , Zilun Chen , Chaohai Zhang , Qinyou An , Xiaoxing Zhang . Spatial confinement of free-standing graphene sponge enables excellent stability of conversion-type Fe2O3 anode for sodium storage. Chinese Chemical Letters, 2025, 36(3): 110010-. doi: 10.1016/j.cclet.2024.110010
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Zheng Li , Fangkun Li , Xijun Xu , Jun Zeng , Hangyu Zhang , Lei Xi , Yiwen Wu , Linwei Zhao , Jiahe Chen , Jun Liu , Yanping Huo , Shaomin Ji . A scalable approach to Na4Fe3(PO4)2P2O7@carbon/expanded graphite as cathode for ultralong-lifespan and low-temperature sodium-ion batteries. Chinese Chemical Letters, 2025, 36(10): 110390-. doi: 10.1016/j.cclet.2024.110390
Jing Guo . Stacking solid-state electrolyte and aluminum pellets for anode-free solid-state batteries. Chinese Chemical Letters, 2025, 36(5): 110764-. doi: 10.1016/j.cclet.2024.110764
Zhenyang Yu , Yueyue Gu , Qi Sun , Yang Zheng , Yifang Zhang , Mengmeng Zhang , Delin Zhang , Zhijia Zhang , Yong Jiang . Research progress of modified metal current collectors in sodium metal anodes. Chinese Chemical Letters, 2025, 36(6): 109997-. doi: 10.1016/j.cclet.2024.109997
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Ze Liu , Xiaochen Zhang , Jinlong Luo , Yingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Qiong Su , Chao Hu , Sichan Li , Wenjun Huang , Jianyu Dong , Ren Song , Lan Xu , Guozhao Fang . Sodium-ion batteries at low temperature: Storage mechanism and modification strategies. Chinese Chemical Letters, 2025, 36(12): 111267-. doi: 10.1016/j.cclet.2025.111267
Liangju Zhao , Shiyu Qin , Fei Wu , Limin Zhu , Qing Han , Lingling Xie , Xuejing Qiu , Hongliang Wei , Lanhua Yi , Xiaoyu Cao . Polycarbonyl conjugated porous polyimide as anode materials for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(8): 110246-. doi: 10.1016/j.cclet.2024.110246
Li Lin , Song-Lin Tian , Zhen-Yu Hu , Yu Zhang , Li-Min Chang , Jia-Jun Wang , Wan-Qiang Liu , Qing-Shuang Wang , Fang Wang . Molecular crowding electrolytes for stabilizing Zn metal anode in rechargeable aqueous batteries. Chinese Chemical Letters, 2024, 35(7): 109802-. doi: 10.1016/j.cclet.2024.109802
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Haotian Zhang , Shengfa Feng , Mufan Cao , Xiong Xiong Liu , Pengcheng Yuan , Yaping Wang , Min Gao , Long Pan , Zhengming Sun . Al2O3 coated polyimide porous films enable thin yet strong polymer-in-salt solid-state electrolytes for dendrite-free lithium metal batteries. Chinese Chemical Letters, 2025, 36(8): 111096-. doi: 10.1016/j.cclet.2025.111096
Huyi Yu , Renshu Huang , Qian Liu , Xingfa Chen , Tianqi Yu , Haiquan Wang , Xincheng Liang , Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650