Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide
-
* Corresponding author.
E-mail address: kchen@nju.edu.cn (K. Chen).
Citation: Wei-Jia Wang, Kaihong Chen. Molecular-based porous polymers with precise sites for photoreduction of carbon dioxide[J]. Chinese Chemical Letters, ;2025, 36(1): 109998. doi: 10.1016/j.cclet.2024.109998
M. Meinshausen, N. Meinshausen, W. Hare, et al., Nature 458 (2009) 1158–1162.
doi: 10.1038/nature08017
T.R. Karl, K.E. Trenberth, Science 302 (2003) 1719–1723.
doi: 10.1126/science.1090228
C. Zhou, J. Shi, W. Zhou, et al., ACS Catal. 10 (2020) 302–310.
doi: 10.1021/acscatal.9b04309
Q. Guo, S.G. Xia, X.B. Li, et al., Chem. Commun. 56 (2020) 7849.
doi: 10.1039/D0CC01091J
W. Zhou, K. Cheng, J. Kang, et al., Chem. Soc. Rev. 48 (2019) 3193–3228.
doi: 10.1039/C8CS00502H
L. Lu, X.F. Sun, J. Ma, et al., Angew. Chem. Int. Ed. 57 (2018) 14149–14153.
doi: 10.1002/anie.201808964
X. He, Y. Cao, X.D. Lang, et al., ChemSusChem 11 (2018) 3382–3387.
doi: 10.1002/cssc.201801621
J. Artz, T.E. Müller, K. Thenert, et al., Chem. Rev. 118 (2018) 434–504.
doi: 10.1021/acs.chemrev.7b00435
K. Chen, J. Xiao, T. Hisatomi, et al., Chem. Sci. 14 (2023) 9248–9257.
doi: 10.1039/D3SC03198E
G. Wang, C.T. He, R. Huang, et al., J. Am. Chem. Soc. 142 (2020) 19339–19345.
doi: 10.1021/jacs.0c09599
Y.N. Gong, J.H. Mei, W.J. Shi, et al., Angew. Chem. Int. Ed. 63 (2024) e202318735.
J.H. Zhang, Y.N. Gong, H.J. Wang, et al., Proc. Natl. Acad. Sci. U. S. A. 119 (2022) e2118278119.
Q. Zhang, S. Gao, Y. Guo, et al., Nat. Commun. 14 (2023) 1147.
doi: 10.1038/s41467-023-36779-4
J. Zhang, Y. Wang, H. Wang, D. Zhong, T. Lu, Chin. Chem. Lett. 33 (2022) 2065–2068.
doi: 10.1016/j.cclet.2021.09.035
M.T. Ming, Y.C. Wang, W.X. Tao, et al., Green Chem. 25 (2023) 6207–6211.
doi: 10.1039/D3GC01461D
H. Lv, P. Li, X. Li, et al., Chem. Eng. J. 451 (2023) 138745.
doi: 10.1016/j.cej.2022.138745
J.W. Liu, C.Y. Chen, K. Zhang, L. Zhang, Chin. Chem. Lett. 32 (2021) 649–659.
doi: 10.1016/j.cclet.2020.07.040
N. Elgrishi, M.B. Chambers, X. Wang, M. Fontecave, Chem. Soc. Rev. 46 (2017) 761–796.
doi: 10.1039/C5CS00391A
M. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783–2828.
doi: 10.1039/C8CS00829A
H. Rao, C. Lim, J. Bonin, G.M. Miyake, M. Robert, J. Am. Chem. Soc. 140 (2018) 17830–17834.
doi: 10.1021/jacs.8b09740
A. Savateev, M. Antonietti, ACS Catal. 8 (2018) 9790–9808.
doi: 10.1021/acscatal.8b02595
X.B. Li, C.H. Tung, L.Z. Wu, Nat. Rev. Chem. 2 (2018) 160–173.
doi: 10.1038/s41570-018-0024-8
A.G. Slater, A.I. Cooper, Science 348 (2015) aaa8075.
doi: 10.1126/science.aaa8075
C. Cometto, R. Kuriki, L. Chen, et al., J. Am. Chem. Soc. 140 (2018) 7437–7440.
doi: 10.1021/jacs.8b04007
Y. Li, S. Zhang, W. Cheng, et al., Adv. Mater. 34 (2022) 2105204.
doi: 10.1002/adma.202105204
H. Kim, D. Shin, W. Yang, et al., J. Am. Chem. Soc. 143 (2021) 925–933.
doi: 10.1021/jacs.0c11008
A. Savateev, I. Ghosh, B. König, M. Antonietti, Angew. Chem. Int. Ed. 57 (2018) 15936–15947.
doi: 10.1002/anie.201802472
W.J. Wang, K.H. Chen, Z.W. Yang, B.W. Peng, L.N. He, J. Mater. Chem. A 9 (2021) 16699–16705.
doi: 10.1039/D1TA04418D
X. Wang, Y. Pan, H. Ning, et al., Appl. Catal. B 266 (2020) 118630.
doi: 10.1016/j.apcatb.2020.118630
Y. Li, S. Wang, X.S. Wang, et al., J. Am. Chem. Soc. 142 (2020) 19259–19267.
doi: 10.1021/jacs.0c09060
Y.N. Gong, L. Jiao, Y. Qian, et al., Angew. Chem. Int. Ed. 59 (2020) 2705–2709.
doi: 10.1002/anie.201914977
A. Guan, Z. Chen, Y. Quan, et al., ACS Energy Lett. 5 (2020) 1044–1053.
doi: 10.1021/acsenergylett.0c00018
Y. Cai, J. Fu, Y. Zhou, et al., Nat. Commun. 12 (2021) 586.
doi: 10.1038/s41467-020-20769-x
D. Gao, T. Liu, G. Wang, X. Bao, ACS Energy Lett. 6 (2021) 713–727.
doi: 10.1021/acsenergylett.0c02665
X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 1 (2018) 385–397.
doi: 10.1038/s41929-018-0090-9
R. Lang, T. Li, D. Matsumura, et al., Angew. Chem. Int. Ed. 55 (2016) 16054–16058.
doi: 10.1002/anie.201607885
S. Lin, C.S. Diercks, Y.B. Zhang, et al., Science 349 (2015) 1208–1213.
doi: 10.1126/science.aac8343
G. Huang, Q. Niu, J. Zhang, et al., Chem. Eng. J. 427 (2022) 131018.
doi: 10.1016/j.cej.2021.131018
J.H. Kou, C.H. Lu, J. Wang, et al., Chem. Rev. 117 (2017) 1445–1514.
doi: 10.1021/acs.chemrev.6b00396
L. Rademacher, T. Beglau, B. Ali, et al., J. Mater. Chem. A 12 (2024) 2093–2109.
doi: 10.1039/D3TA05597C
Y. Liang, X. Wu, X. Liu, C. Li, S. Liu, Appl. Catal. B 304 (2022) 120978.
doi: 10.1016/j.apcatb.2021.120978
J. Ran, M. Jaroniec, S.Z. Qiao, Adv. Mater. 30 (2018) 1704649.
doi: 10.1002/adma.201704649
K. Li, B. Peng, T. Peng, ACS Catal. 6 (2016) 7485–7527.
doi: 10.1021/acscatal.6b02089
H.L. Wu, X.B. Li, C.H. Tung, L.Z. Wu, Adv. Mater. 31 (2019) 1900709.
doi: 10.1002/adma.201900709
S. Kramer, N.R. Bennedsen, S. Kegnæs, ACS Catal. 8 (2018) 6961–6982.
doi: 10.1021/acscatal.8b01167
P. Kaur, J.T. Hupp, S.T. Nguyen, ACS Catal. 1 (2011) 819–835.
doi: 10.1021/cs200131g
C. Qian, W. Zhou, J. Qiao, et al., J. Am. Chem. Soc. 142 (2020) 18138–18149.
doi: 10.1021/jacs.0c08436
J.Q. Dong, X. Han, Y. Liu, H.Y. Li, Y. Cui, Angew. Chem. Int. Ed. 59 (2020) 13722–13733.
doi: 10.1002/anie.202004796
B. Han, X. Ou, Z. Zhong, et al., Small 16 (2020) 2002985.
doi: 10.1002/smll.202002985
C. Dai, B. Liu, Energy Environ. Sci. 13 (2020) 24–52.
doi: 10.1039/C9EE01935A
X. Chen, S. Shen, L. Guo, S.S. Mao, Chem. Rev. 110 (2010) 6503–6570.
doi: 10.1021/cr1001645
X. Liu, S. Inagaki, J. Gong, Angew. Chem. Int. Ed. 55 (2016) 14924–14950.
doi: 10.1002/anie.201600395
C. Wang, Z. Sun, Y. Zheng, Y.H. Hu, J. Mater. Chem. A 7 (2019) 865–887.
doi: 10.1039/C8TA09865D
X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596–1606.
doi: 10.1021/cs300240x
Y. Zheng, L. Lin, B. Wang, X. Wang, Angew. Chem. Int. Ed. 54 (2015) 12868–12884.
doi: 10.1002/anie.201501788
C. Chen, W. Ma, J. Zhao, Chem. Soc. Rev. 39 (2010) 4206–4219.
doi: 10.1039/b921692h
D.D. Zhu, J.L. Liu, S.Z. Qiao, Adv. Mater. 28 (2016) 3423.
doi: 10.1002/adma.201504766
S. Zhang, S. Wang, L. Guo, et al., J. Mater. Chem. C 8 (2020) 192–200.
doi: 10.1039/C9TC05297F
H.P. Liang, A. Acharjya, D.A. Anito, et al., ACS Catal. 9 (2019) 3959–3968.
doi: 10.1021/acscatal.8b04032
Y. Chen, G. Ji, S. Guo, et al., Green Chem. 19 (2017) 5777–5781.
doi: 10.1039/C7GC02346D
L. Zhang, Z.J. Zhao, J. Gong, Angew. Chem. Int. Ed. 56 (2017) 11326–11353.
doi: 10.1002/anie.201612214
X.F. Yang, A. Wang, B. Qiao, et al., Acc. Chem. Res. 46 (2013) 1740–1748.
doi: 10.1021/ar300361m
J.L. White, M.F. Baruch, J.E. Pander Ⅲ, et al., Chem. Rev. 115 (2015) 12888–12935.
doi: 10.1021/acs.chemrev.5b00370
M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995) 69–96.
doi: 10.1021/cr00033a004
A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95 (1995) 735–758.
doi: 10.1021/cr00035a013
S. Sorcar, Y. Hwang, C.A. Grimes, Mater. Today 20 (2017) 507–515.
doi: 10.1016/j.mattod.2017.09.005
P.V. Kamat, J. Phys. Chem. Lett. 3 (2012) 663–672.
doi: 10.1021/jz201629p
M.A. Henderson, Surf. Sci. Rep. 66 (2011) 185–297.
doi: 10.1016/j.surfrep.2011.01.001
A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63 (2008) 515–582.
doi: 10.1016/j.surfrep.2008.10.001
S.H. Szczepankiewicz, A.J. Colussi, M.R. Hoffmann, J. Phys. Chem. B 104 (2000) 9842–9850.
doi: 10.1021/jp0007890
D.M. Adams, L. Brus, C.E.D. Chidsey, et al., J. Phys. Chem. B 107 (2003) 6668–6697.
M. Jakob, H. Levanon, P.V. Kamat, Nano Lett. 3 (2003) 353–358.
doi: 10.1021/nl0340071
S. Kim, S.J. Hwang, W. Choi, J. Phys. Chem. B 109 (2005) 24260–24267.
doi: 10.1021/jp055278y
J.T. DuBose, P.V. Kamat, Chem. Rev. 122 (2022) 12475–12494.
doi: 10.1021/acs.chemrev.2c00172
X. Chang, T. Wang, J. Gong, Energy Environ. Sci. 9 (2016) 2177–2196.
doi: 10.1039/C6EE00383D
A. Behera, A.K. Kar, R. Srivastava, Mater. Horiz. 9 (2022) 607–639.
doi: 10.1039/D1MH01490K
T. Oshima, T. Ichibha, K. Qin, et al., Angew. Chem. Int. Ed. 57 (2018) 8154–8158.
doi: 10.1002/anie.201803931
S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Angew. Chem. Int. Ed. 52 (2013) 7372–7408.
doi: 10.1002/anie.201207199
A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65–81.
doi: 10.1038/s41570-018-0010-1
B. Qiao, A. Wang, X. Yang, et al., Nat. Chem. 3 (2011) 634–641.
doi: 10.1038/nchem.1095
L.H. Shao, A.X. Huang, X.C. Yan, et al., J. Colloid Interface Sci. 633 (2023) 233–242.
doi: 10.1016/j.jcis.2022.11.094
J. Fu, B. Zhu, C. Jiang, et al., Small 13 (2017) 1603938.
doi: 10.1002/smll.201603938
B.H. Lee, S. Park, M. Kim, et al., Nat. Mater. 18 (2019) 620–626.
doi: 10.1038/s41563-019-0344-1
C. Gao, J. Low, R. Long, et al., Chem. Rev. 120 (2020) 12175–12216.
doi: 10.1021/acs.chemrev.9b00840
J.C. Liu, Y. Tang, Y.G. Wang, T. Zhang, J. Li, Natl. Sci. Rev. 5 (2018) 638–641.
doi: 10.1093/nsr/nwy094
J. Li, Q. Guan, H. Wu, et al., J. Am. Chem. Soc. 141 (2019) 14515–14519.
doi: 10.1021/jacs.9b06482
Y. Zhang, B. Xia, J. Ran, K. Davey, S.Z. Qiao, Adv. Energy Mater. 10 (2020) 1903879.
doi: 10.1002/aenm.201903879
A.P. Côté, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166–1170.
doi: 10.1126/science.1120411
H. Wang, H. Wang, Z. Wang, et al., Chem. Soc. Rev. 49 (2020) 4135–4165.
doi: 10.1039/D0CS00278J
K.K. Niu, T.X. Luan, J. Cui, et al., ACS Catal. 14 (2024) 2631–2641.
doi: 10.1021/acscatal.3c05454
C.Y. Lin, D.T. Zhang, Z.H. Zhao, Z.H. Xia, Adv. Mater. 30 (2018) 1703646.
doi: 10.1002/adma.201703646
P. Pachfule, A. Acharjya, J. Roeser, et al., J. Am. Chem. Soc. 140 (2018) 1423–1427.
doi: 10.1021/jacs.7b11255
T. Sick, A.G. Hufnagel, J. Kampmann, et al., J. Am. Chem. Soc. 140 (2018) 2085–2092.
doi: 10.1021/jacs.7b06081
J.D. Xiao, H.L. Jiang, Acc. Chem. Res. 52 (2019) 356–366.
doi: 10.1021/acs.accounts.8b00521
X. Liu, X. Ding, T. Zheng, et al., ACS Appl. Mater. Interfaces 16 (2024) 4741–4750.
doi: 10.1021/acsami.3c16319
Y. Fu, X. Zhu, L. Huang, et al., Appl. Catal. B 239 (2018) 46.
doi: 10.1016/j.apcatb.2018.08.004
F. Chen, H. Huang, L. Guo, Y. Zhang, T. Ma, Angew. Chem. Int. Ed. 58 (2019) 10061–10073.
doi: 10.1002/anie.201901361
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222–243.
doi: 10.1016/j.mattod.2019.06.009
S. Xu, E.A. Carter, Chem. Rev. 119 (2019) 6631–6669.
doi: 10.1021/acs.chemrev.8b00481
Y. Fang, X. Wang, Chem. Commun. 54 (2018) 5674–5687.
doi: 10.1039/C8CC02046A
E. Jin, M. Asada, Q. Xu, et al., Science 357 (2017) 673–676.
doi: 10.1126/science.aan0202
R. Chen, J.L. Shi, Y. Ma, et al., Angew. Chem. Int. Ed. 58 (2019) 6430–6434.
doi: 10.1002/anie.201902543
S. Yang, W. Hu, X. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614–14618.
doi: 10.1021/jacs.8b09705
Z. Fu, X. Wang, A.M. Gardner, et al., Chem. Sci. 11 (2020) 543–550.
doi: 10.1039/C9SC03800K
W. Zhong, R. Sa, L. Li, et al., J. Am. Chem. Soc. 141 (2019) 7615–7621.
doi: 10.1021/jacs.9b02997
D.L. Meng, M.D. Zhang, D.H. Si, et al., Angew. Chem. Int. Ed. 60 (2021) 25485–25492.
doi: 10.1002/anie.202111136
H.B. Huang, Z.B. Fang, R. Wang, et al., Small 18 (2022) e2200407.
P.X. Li, X.Y. Yan, X.M. Song, et al., ACS Sustain. Chem. Eng. 9 (2021) 2319–2325.
doi: 10.1021/acssuschemeng.0c08559
H. Zhao, X. Yang, R. Xu, et al., J. Mater. Chem. A 6 (2018) 20152–20160.
doi: 10.1039/C8TA05970E
M. Lu, J. Liu, Q. Li, et al., Angew. Chem. Int. Ed. 58 (2019) 12392–12397.
doi: 10.1002/anie.201906890
X. Wang, X. Ding, T. Wang, et al., ACS Appl. Mater. Interfaces 14 (2022) 41122–41130.
doi: 10.1021/acsami.2c12542
J. Tang, Z. Liang, H. Qin, et al., Angew. Chem. Int. Ed. 62 (2023) e202214449.
M. Zhang, M. Lu, Z.L. Lang, et al., Angew. Chem. Int. Ed. 59 (2020) 6500–6506.
doi: 10.1002/anie.202000929
D. Wang, X. Li, L.L. Zheng, et al., Nanoscale 10 (2018) 19509–19516.
doi: 10.1039/C8NR06691D
D. Wang, H. Zeng, X. Xiong, et al., Sci. Bull. 65 (2020) 113–122.
doi: 10.1016/j.scib.2019.10.015
R. Gao, J. Bai, R. Shen, et al., J. Mater. Sci. Technol. 137 (2023) 223–231.
doi: 10.1016/j.jmst.2022.09.001
Y. Chen, D. Yang, Y. Gao, et al., Research 2021 (2021) 9798564.
Y. Wang, Z. Hu, W. Wang, et al., Chem. Sci. 12 (2021) 16065–16073.
doi: 10.1039/D1SC05893B
Y. Feng, J. Li, S. Ye, S. Gao, R. Cao, Sustain. Energy Fuels 6 (2022) 5089–5099.
doi: 10.1039/D2SE01159J
C.C. Li, M.Y. Gao, X.J. Sun, et al., Appl. Catal. B 266 (2020) 118586.
doi: 10.1016/j.apcatb.2020.118586
L. Liu, J. Zhang, X. Tan, et al., Nano Res. 13 (2020) 983–988.
doi: 10.1007/s12274-020-2728-6
M. Zhang, J.N. Chang, Y.F. Chen, et al., Adv. Mater. 23 (2021) 2105002.
P. Dong, A. Zhang, T. Cheng, et al., Chin. J. Catal. 43 (2022) 2592–2605.
doi: 10.1016/S1872-2067(22)64094-4
C. Lin, C. Han, L. Gong, et al., Catal. Sci. Technol. 11 (2021) 2616–2621.
doi: 10.1039/D0CY02330B
W. Han, L.H. Shao, X.J. Sun, et al., Appl. Catal. B 317 (2022) 121710.
doi: 10.1016/j.apcatb.2022.121710
G. Yuan, L. Tan, P. Wang, et al., Mater. Lett. 325 (2022) 132863.
doi: 10.1016/j.matlet.2022.132863
Z. Han, R. Kortlever, H.Y. Chen, J.C. Peters, T. Agapie, ACS Cent. Sci. 3 (2017) 853–859.
doi: 10.1021/acscentsci.7b00180
S. Ou, M. Zhou, W. Chen, Y. Zhang, Y. Liu, ChemSusChem 15 (2022) e202200184.
Q. Sun, B. Aguila, J. Perman, N. Nguyen, S. Ma, J. Am. Chem. Soc. 138 (2016) 15790–15796.
doi: 10.1021/jacs.6b10629
J. Thote, H.B. Aiyappa, A. Deshpande, et al., Chem. Eur. J. 20 (2014) 15961–15965.
doi: 10.1002/chem.201403800
B.P. Biswal, H.A. Vignolo-González, T. Banerjee, et al., J. Am. Chem. Soc. 141 (2019) 11082–11092.
doi: 10.1021/jacs.9b03243
T. Banerjee, F. Haase, G. Savasci, et al., J. Am. Chem. Soc. 139 (2017) 16228–16234.
doi: 10.1021/jacs.7b07489
Y. Liu, Y. He, Anal. Chem. 95 (2023) 14440–14446.
doi: 10.1021/acs.analchem.3c02936
H. Zhong, R. Sa, H. Lv, et al., Adv. Funct. Mater. 30 (2020) 2002654.
doi: 10.1002/adfm.202002654
V.N. Gopalakrishnan, D.T. Nguyen, J. Becerra, et al., ACS Appl. Energy Mater. 4 (2021) 6005–6014.
J. Wang, Y. Yu, J. Cui, et al., Appl Catal. B 301 (2022) 120814.
doi: 10.1016/j.apcatb.2021.120814
H. Lin, Y. Liu, Z. Wang, et al., Angew. Chem. Int. Ed. 61 (2022) e202214142.
W. Shi, X. Guo, C. Cui, et al., Appl. Catal. B 243 (2019) 236.
doi: 10.1016/j.apcatb.2018.09.076
Y. Fu, D. Sun, Y. Chen, et al., Angew. Chem. Int. Ed. 51 (2012) 3364–3367.
doi: 10.1002/anie.201108357
D. Sun, Y. Fu, W. Liu, et al., Chem. Eur. J. 19 (2013) 14279–14285.
doi: 10.1002/chem.201301728
D. Sun, W. Liu, Y. Fu, et al., Chem. Eur. J. 20 (2014) 4780–4788.
doi: 10.1002/chem.201304067
S. Zhang, S. Wang, L. Guo, et al., J. Mater. Chem. C 8 (2020) 192–200.
doi: 10.1039/C9TC05297F
B. Zhu, L. Zhang, D. Xu, B. Cheng, J. Yu, J. CO2 Util. 21 (2017) 327–335.
doi: 10.1016/j.jcou.2017.07.021
Z.J. Li, D.H. Wang, Y.E. Wu, Y.D. Li, Natl. Sci. Rev. 5 (2018) 673–689.
doi: 10.1093/nsr/nwy056
M.Z. Ma, Z.A. Huang, D.E. Doronkin, et al., Appl. Catal. B 300 (2022) 120695.
doi: 10.1016/j.apcatb.2021.120695
K. Qi, M. Chhowalla, D. Voiry, Mater. Today 40 (2020) 173.
doi: 10.1016/j.mattod.2020.07.002
J. Liang, Q. Song, J. Wu, et al., ACS Nano 16 (2022) 4152–4161.
doi: 10.1021/acsnano.1c10003
Q. Jiang, L. Sun, J. Bi, et al., ChemSusChem 11 (2018) 1108–1113.
doi: 10.1002/cssc.201702220
T. Jadhav, Y. Fang, W. Patterson, et al., Angew. Chem. Int. Ed. 58 (2019) 13753–13757.
doi: 10.1002/anie.201906976
P. Puthiaraj, Y.R. Lee, S. Zhang, W.S. Ahn, J. Mater. Chem. A 4 (2016) 16288–16311.
doi: 10.1039/C6TA06089G
J.S.M. Lee, A.I. Cooper, Chem. Rev. 120 (2020) 2171–2214.
doi: 10.1021/acs.chemrev.9b00399
P. Kuhn, M. Antonietti, A. Thomas, Angew. Chem. Int. Ed. 47 (2008) 3450–3453.
doi: 10.1002/anie.200705710
H.B. Yang, S.F. Hung, S. Liu, et al., Nat. Energy 3 (2018) 140–147.
doi: 10.1038/s41560-017-0078-8
X.M. Hu, H.H. Hval, E.T. Bjerglund, et al., ACS Catal. 8 (2018) 6255–6264.
doi: 10.1021/acscatal.8b01022
C. Costentin, S. Drouet, M. Robert, J.M. Savéant, Science 338 (2012) 90–94.
doi: 10.1126/science.1224581
J. Shen, R. Kortlever, R. Kas, et al., Nat. Commun. 6 (2015) 8177.
doi: 10.1038/ncomms9177
X. Zhu, C. Tian, G.M. Veith, et al., J. Am. Chem. Soc. 138 (2016) 11497–11500.
doi: 10.1021/jacs.6b07644
G. Huang, Q. Niu, J. Zhang, et al., Chem. Eng. J. 427 (2022) 131018.
doi: 10.1016/j.cej.2021.131018
G. Huang, Q. Niu, Y. He, et al., Nano Res. 15 (2022) 8001–8009.
doi: 10.1007/s12274-022-4629-3
R. Xu, X.S. Wang, H. Zhao, et al., Catal. Sci. Technol. 8 (2018) 2224–2230.
doi: 10.1039/C8CY00176F
R.K. Yadav, A. Kumar, N.J. Park, K.J. Kong, J.O.A. Baeg, J. Mater. Chem. A 4 (2016) 9413–9418.
doi: 10.1039/C6TA01625A
J. He, X. Wang, S. Jin, Z.Q. Liu, M. Zhu, Chin. J. Catal. 43 (2022) 1306–1315.
doi: 10.1016/S1872-2067(21)63936-0
R. Luo, M. Chen, F. Zhou, et al., J. Mater. Chem. A 9 (2021) 25731–25749.
doi: 10.1039/D1TA08146B
J. Bi, B. Xu, L. Sun, et al., ChemSusChem 12 (2019) 4493–4499.
doi: 10.1002/cssc.201901997
S. Guo, P. Yang, Y. Zhao, et al., ChemSusChem 13 (2020) 6278–6283.
doi: 10.1002/cssc.202000712
Y.L. Yan, Q.J. Fang, J.k. Pan, et al., Chem. Eng. J. 408 (2021) 127358.
doi: 10.1016/j.cej.2020.127358
P. Gotico, B. Boitrel, R. Guillot, et al., Angew. Chem. Int. Ed. 58 (2019) 4504–4509.
doi: 10.1002/anie.201814339
Q. Wang, J. Wang, J.C. Wang, et al., ChemSusChem 14 (2021) 1131–1139.
doi: 10.1002/cssc.202002847
R.S. Sprick, J.X. Jiang, B. Bonillo, et al., J. Am. Chem. Soc. 137 (2015) 3265–3270.
doi: 10.1021/ja511552k
R. Banerjee, H. Furukawa, D. Britt, et al., J. Am. Chem. Soc. 131 (2009) 3875-3270.
doi: 10.1021/ja809459e
R. Vaidhyanathan, S.S. Iremonger, G.K.H. Shimizu, et al., Science 330 (2010) 650–653.
doi: 10.1126/science.1194237
W. Lu, D. Yuan, J. Sculley, et al., J. Am. Chem. Soc. 133 (2011) 18126–18129.
doi: 10.1021/ja2087773
L.H. Xie, M.P. Suh, Chem. Eur. J. 19 (2013) 11590–11597.
doi: 10.1002/chem.201301822
L. Qin, G.J. Xu, C. Yao, Y.H. Xu, Chem. Commun. 52 (2016) 12602–12605.
doi: 10.1039/C6CC05097B
A. Yassin, M. Trunk, F. Czerny, et al., Adv. Funct. Mater. 27 (2017) 1700233.
doi: 10.1002/adfm.201700233
D.S. Amaraseela, N.M. Sarih, S. Habibu, Energy Adv. 2 (2023) 1127–1133.
doi: 10.1039/D2YA00346E
J. Weber, A. Thomas, J. Am. Chem. Soc. 130 (2008) 6334–6335.
doi: 10.1021/ja801691x
C.A. Trickett, A. Helal, B.A. Almaythalony, et al., Nat. Rev. Mater. 2 (2017) 201745.
C. Chen, C. Tang, W. Xu, Y. Li, L. Xu, Phys. Chem. Chem. Phys. 20 (2018) 9536–9542.
doi: 10.1039/C8CP00974K
X. Yao, K. Chen, L.Q. Qiu, Z.W. Yang, L.N. He, Chem. Mater. 33 (2021) 8863–8872.
doi: 10.1021/acs.chemmater.1c03136
X.Y. Dong, Y.N. Si, Q.Y. Wang, S. Wang, S.Q. Zang, Adv. Mater. 33 (2021) 2101568.
doi: 10.1002/adma.202101568
Y. Xie, T.T. Wang, X.H. Liu, K. Zou, W.Q. Deng, Nat. Commun. 4 (2013) 1960.
doi: 10.1038/ncomms2960
X. Yu, Z. Yang, B. Qiu, et al., Angew. Chem. Int. Ed. 58 (2019) 632–636.
doi: 10.1002/anie.201812790
S. Wang, X. Hai, X. Ding, et al., Nat. Commun. 11 (2020) 1149.
doi: 10.1038/s41467-020-14851-7
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Jiaqi Ma , Lan Li , Yiming Zhang , Jinjie Qian , Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466
Jiangqi Ning , Junhan Huang , Yuhang Liu , Yanlei Chen , Qing Niu , Qingqing Lin , Yajun He , Zheyuan Liu , Yan Yu , Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Weixu Li , Yuexin Wang , Lin Li , Xinyi Huang , Mengdi Liu , Bo Gui , Xianjun Lang , Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299
Yue Pan , Wenping Si , Yahao Li , Haotian Tan , Ji Liang , Feng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877
Chaoqun Ma , Yuebo Wang , Ning Han , Rongzhen Zhang , Hui Liu , Xiaofeng Sun , Lingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Mengjun Zhao , Yuhao Guo , Na Li , Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2024.100195
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2023.100463
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
Jia-Cheng Hou , Wei Cai , Hong-Tao Ji , Li-Juan Ou , Wei-Min He . Recent advances in semi-heterogenous photocatalysis in organic synthesis. Chinese Chemical Letters, 2025, 36(2): 110469-. doi: 10.1016/j.cclet.2024.110469
Yan Wang , Jiaqi Zhang , Xiaofeng Wu , Sibo Wang , Masakazu Anpo , Yuanxing Fang . Elucidating oxygen evolution and reduction mechanisms in nitrogen-doped carbon-based photocatalysts. Chinese Chemical Letters, 2025, 36(2): 110439-. doi: 10.1016/j.cclet.2024.110439
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Bingke Zhang , Dongbo Wang , Jiamu Cao , Wen He , Gang Liu , Donghao Liu , Chenchen Zhao , Jingwen Pan , Sihang Liu , Weifeng Zhang , Xuan Fang , Liancheng Zhao , Jinzhong Wang . Tuning Stark effect by defect engineering on black titanium dioxide mesoporous spheres for enhanced hydrogen evolution. Chinese Chemical Letters, 2024, 35(11): 110254-. doi: 10.1016/j.cclet.2024.110254
Yan-Kai Zhang , Yong-Zheng Zhang , Chun-Xiao Jia , Fang Wang , Xiuling Zhang , Yuhang Wu , Zhongmin Liu , Hui Hu , Da-Shuai Zhang , Longlong Geng , Jing Xu , Hongliang Huang . A stable Zn-MOF with anthracene-based linker for Cr(VI) photocatalytic reduction under sunlight irradiation. Chinese Chemical Letters, 2024, 35(12): 109756-. doi: 10.1016/j.cclet.2024.109756