Citation: Bin Zhao, Heping Luo, Jiaqing Liu, Sha Chen, Han Xu, Yu Liao, Xue Feng Lu, Yan Qing, Yiqiang Wu. S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution[J]. Chinese Chemical Letters, ;2025, 36(5): 109919. doi: 10.1016/j.cclet.2024.109919 shu

S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution

Figures(6)

  • Industrial high-current-density oxygen evolution catalyst is the key to accelerating the practical application of hydrogen energy. Herein, Co9S8/CoS heterojunctions were rationally encapsulated in S, N-codoped carbon ((Co9S8/CoS)@SNC) microleaf arrays, which are rooted on S-doped carbonized wood fibers (SCWF). Benefiting from the synergistic electronic interactions on heterointerfaces and the accelerated mass transfer by array structure, the obtained self-supporting (Co9S8/CoS)@SNC/SCWF electrode exhibits superior performance toward alkaline oxygen evolution reaction (OER) with an ultra-low overpotential of 274 mV at 1000 mA/cm2, a small Tafel slope of 48.84 mV/dec, and ultralong stability up to 100 h. Theoretical calculations show that interfacing Co9S8 with CoS can upshift the d-band center of the Co atoms and strengthen the interactions with oxygen intermediates, thereby favoring OER performance. Furthermore, the (Co9S8/CoS)@SNC/SCWF electrode shows outstanding rechargeability and stable cycle life in aqueous Zn-air batteries with a peak power density of 201.3 mW/cm2, exceeding the commercial RuO2 and Pt/C hybrid catalysts. This work presents a promising strategy for the design of high-current-density OER electrocatalysts from sustainable wood fiber resources, thus promoting their practical applications in the field of electrochemical energy storage and conversion.
  • 加载中
    1. [1]

      M.S. Dresselhaus, I.L. Thomas, Nature 414 (2001) 332–337.

    2. [2]

      X.F. Lu, L. Yu, X.W. Lou, Sci. Adv. 5 (2019) eaav6009.

    3. [3]

      C.F. Li, L.J. Xie, J.W. Zhao, et al., Appl. Catal. B: Environ. 306 (2022) 121097.

    4. [4]

      Y. Zhang, G. Zhang, M. Zhang, et al., Chem. Eng. J. 433 (2022) 133577.

    5. [5]

      K. Jiang, M. Luo, M. Peng, et al., Nat. Commun. 11 (2020) 2701.

    6. [6]

      L. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater. 33 (2021) 2004243.

    7. [7]

      H. Wang, S. Zhu, J. Deng, et al., Chin. Chem. Lett. 32 (2021) 291–298.

    8. [8]

      X.F. Zhang, W.H. Huang, L. Yu, et al., Carbon Energy 6 (2024) e362.

    9. [9]

      W.H. Huang, T.T. Bo, S.W. Zuo, et al., SusMat 2 (2022) 466–475.  doi: 10.1002/sus2.76

    10. [10]

      Z. Li, X. Zhang, Z. Zhang, et al., Appl. Catal. B: Environ. 325 (2023) 122311.

    11. [11]

      Y. Luo, Z. Zhang, M. Chhowalla, B. Liu, Adv. Mater. 34 (2022) 2108133.

    12. [12]

      X. Xie, L. Du, L. Yan, et al., Adv. Funct. Mater. 32 (2022) 2110036.

    13. [13]

      J. Chen, J. Chen, H. Cui, C. Wang, ACS Appl. Mater. Interfaces 11 (2019) 34819–34826.  doi: 10.1021/acsami.9b08060

    14. [14]

      S. Niu, W.J. Jiang, T. Tang, et al., Adv. Sci. 4 (2017) 1700084.

    15. [15]

      X. Wu, H.B. Zhang, S.W. Zuo, et al., Nano Micro Lett. 13 (2021) 136.

    16. [16]

      S.L. Yu, C.X. Guo, J.N. Wang, et al., Nat. Commun. 13 (2022) 6171.

    17. [17]

      X. Yu, Z.Y. Yu, X.L. Zhang, et al., J. Am. Chem. Soc. 141 (2019) 7537–7543.  doi: 10.1021/jacs.9b02527

    18. [18]

      T. Kou, S. Wang, R. Shi, et al., Adv. Energy Mater. 10 (2020) 2002955.

    19. [19]

      X. Wu, S. Zhao, L. Yin, et al., Chin. Chem. Lett. 34 (2023) 108016.

    20. [20]

      J. Zhang, Q. Zhang, X. Feng, Adv. Mater. 31 (2019) 1808167.

    21. [21]

      H. Wang, H. Dai, Chem. Soc. Rev. 42 (2013) 3088–3113.  doi: 10.1039/c2cs35307e

    22. [22]

      X. Ren, T. Wu, Y. Sun, et al., Nat. Commun. 12 (2021) 2608.

    23. [23]

      C.F. Li, J.W. Zhao, L.J. Xie, J.Q. Wu, G.R. Li, Appl. Catal. B: Environ. 291 (2021) 119987.

    24. [24]

      X. Wang, J. Zhang, P. Wang, et al., Energy Environ. Sci. 16 (2023) 5500–5512.  doi: 10.1039/d3ee02503a

    25. [25]

      Y. Liao, Y. Chen, L. Li, et al., Adv. Funct. Mater. 33 (2023) 2303300.

    26. [26]

      F. He, Q. Zheng, X.X. Yang, et al., Adv. Mater. 35 (2023) 2304022.

    27. [27]

      F. He, Y.J. Zhao, X.X. Yang, et al., ACS Nano 16 (2022) 9523–9534.  doi: 10.1021/acsnano.2c02685

    28. [28]

      K. Zhu, J. Chen, W. Wang, et al., Adv. Funct. Mater. 30 (2020) 2003556.

    29. [29]

      F. Chang, P. Su, U. Guharoy, et al., Chin. Chem. Lett. 34 (2023) 107462.

    30. [30]

      G. Cai, W. Zhang, L. Jiao, S.H. Yu, H.L. Jiang, Chem 2 (2017) 791–802.

    31. [31]

      F.P. Cheng, X.Y. Peng, L.Z. Hu, et al., Nat. Commun. 13 (2022) 6486.

    32. [32]

      F.P. Cheng, Z.J. Li, L. Wang, et al., Mater. Horiz. 8 (2021) 556–564.  doi: 10.1039/d0mh01757d

    33. [33]

      Z. Jiang, L. Zheng, C. Sheng, et al., J. Colloid Interface Sci. 626 (2022) 848–857.

    34. [34]

      Y. Liao, S. Deng, Y. Qing, et al., J. Energy Chem. 76 (2023) 566–575.

    35. [35]

      J. Kang, F. Yang, C. Sheng, et al., Small 18 (2022) 2200950.

    36. [36]

      C. Yang, Q. Wu, W. Xie, et al., Nature 598 (2021) 590–596.  doi: 10.1038/s41586-021-03885-6

    37. [37]

      T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Angew. Chem. Int. Ed. 58 (2019) 4923–4928.  doi: 10.1002/anie.201814262

    38. [38]

      D. Guo, Z. Zeng, Z. Wan, et al., Adv. Funct. Mater. 31 (2021) 2101324.

    39. [39]

      Y. Kim, D. Kim, J. Lee, L.Y.S. Lee, D.K.P. Ng, Adv. Funct. Mater. 31 (2021) 2103290.

    40. [40]

      Q. Zhou, S. Hou, Y. Cheng, et al., Appl. Catal. B: Environ. 295 (2021) 120281.

    41. [41]

      H. Xu, Z.X. Shi, Y.X. Tong, G.R. Li, Adv. Mater. 30 (2018) 1705442.

    42. [42]

      Q. Guo, Y. Ma, T. Chen, et al., ACS Nano 11 (2017) 12658–12667.  doi: 10.1021/acsnano.7b07132

    43. [43]

      Y. Zhou, G. Chen, Q. Wang, et al., Adv. Funct. Mater. 31 (2021) 2102420.

    44. [44]

      J. Zhang, M. Zhang, Y. Zeng, et al., Small 15 (2019) 1900307.

    45. [45]

      Q.Y. Xue, Z.M. Xia, W.Y. Gou, et al., ACS Catal. 13 (2023) 400–406.  doi: 10.1021/acscatal.2c02104

    46. [46]

      J.Y. Li, Y.F. Li, Q.Y. Xue, et al., Chin. J. Struct. Chem. 41 (2022) 2207035–2207039.

    47. [47]

      Y. Zhang, Y. Wu, L. Wan, et al., Appl. Catal. B: Environ. 311 (2022) 121255.

    48. [48]

      X. Li, J. Zhou, C. Liu, et al., Appl. Catal. B: Environ. 298 (2021) 120578.

    49. [49]

      T. Dai, X. Zhang, M. Sun, et al., Adv. Mater. 33 (2021) 2102593.

    50. [50]

      Z. Wang, P. Wu, X. Zou, et al., Adv. Funct. Mater. 33 (2023) 2214275.

    51. [51]

      L. Wu, X. Shen, Z. Ji, et al., Adv. Funct. Mater. 33 (2022) 2208170.

    52. [52]

      T.X. Nguyen, Y.H. Su, C.C. Lin, J.M. Ting, Adv. Funct. Mater. 31 (2021) 2106229.

    53. [53]

      Y. He, F. Yan, X. Zhang, et al., Adv. Energy Mater. 13 (2023) 2204177.

    54. [54]

      Y. Deng, Y. Cao, Y. Xia, et al., Adv. Energy Mater. 12 (2022) 2202394.

    55. [55]

      G. Mu, G. Wang, Q. Huang, et al., Adv. Funct. Mater. 33 (2023) 2211260.

    56. [56]

      X. Wang, X. Xu, Y. Nie, R. Wang, J. Zou, Adv. Sci. 10 (2023) 2301961.

    57. [57]

      J. Cai, H. Zhang, L. Zhang, et al., Adv. Mater. 35 (2023) 2303488.

    58. [58]

      X. Deng, Z. Jiang, Y. Chen, et al., Chin. Chem. Lett. 34 (2023) 107389.

    59. [59]

      T. Wang, G. Nam, Y. Jin, et al., Adv. Mater. 30 (2018) 1800757.

    60. [60]

      K. Xiao, Y. Wang, P. Wu, L. Hou, Z.Q. Liu, Angew. Chem. Int. Ed. 62 (2023) e202301408.

  • 加载中
    1. [1]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    2. [2]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    3. [3]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    4. [4]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    5. [5]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    6. [6]

      Tianli Hui Tao Zheng Xiaoluo Cheng Tonghui Li Rui Zhang Xianghai Meng Haiyan Liu Zhichang Liu Chunming Xu . A review of plasma treatment on nano-microstructure of electrochemical water splitting catalysts. Chinese Journal of Structural Chemistry, 2025, 44(3): 100520-100520. doi: 10.1016/j.cjsc.2025.100520

    7. [7]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    8. [8]

      Dongsheng YangZixin LiYaoyao LianZiyao FuTianjiao LiPengtao MaGuoping Yang . A novel square-shaped Zr-substituted polyoxotungstate for the efficient catalytic oxidation of sulfide to sulfone. Chinese Chemical Letters, 2025, 36(3): 109717-. doi: 10.1016/j.cclet.2024.109717

    9. [9]

      Xinxin ZhangZhijian LiangXu ZhangQian GuoYing XieLei WangHonggang Fu . Electronic modulation of VN on Co5.47N as tri-functional electrocatalyst for constructing zinc-air battery to drive water splitting. Chinese Chemical Letters, 2025, 36(5): 109935-. doi: 10.1016/j.cclet.2024.109935

    10. [10]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    11. [11]

      Hongrui ZhangMiaoying CuiYongjie LvYongfang RaoYu Huang . A short review on research progress of ZnIn2S4-based S-scheme heterojunction: Improvement strategies. Chinese Chemical Letters, 2025, 36(4): 110108-. doi: 10.1016/j.cclet.2024.110108

    12. [12]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

    13. [13]

      Genxiang WangLinfeng FanPeng WangJunfeng WangFen QiaoZhenhai Wen . Efficient synthesis of nano high-entropy compounds for advanced oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(4): 110498-. doi: 10.1016/j.cclet.2024.110498

    14. [14]

      Jiawei GeXian WangHeyuan TianHao WanWei MaJiangying QuJunjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906

    15. [15]

      Chupeng LuoKeying SuShan YangYujia LiangYawen TangXiaoyu Qiu . Ultrathin NiS2 nanocages with hierarchical-flexible walls and rich grain boundaries for efficient oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(5): 109940-. doi: 10.1016/j.cclet.2024.109940

    16. [16]

      Qinyu ZhaoYunchao ZhaoSongjing ZhongZhaoyang YueZhuoheng JiangShaobo WangQuanhong HuShuncheng YaoKaikai WenLinlin Li . Urchin-like piezoelectric ZnSnO3/Cu3P p-n heterojunction for enhanced cancer sonodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109644-. doi: 10.1016/j.cclet.2024.109644

    17. [17]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    18. [18]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    19. [19]

      Jinqiang GaoHaifeng YuanXinjuan DuFeng DongYu ZhouShengnan NaYanpeng ChenMingyu HuMei HongShihe Yang . Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution. Chinese Chemical Letters, 2025, 36(1): 110232-. doi: 10.1016/j.cclet.2024.110232

    20. [20]

      Runjing XuXin GaoYa ChenXiaodong ChenLifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852

Metrics
  • PDF Downloads(0)
  • Abstract views(22)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return