Citation: Wei Sun, Anjing Liao, Li Lei, Xu Tang, Ya Wang, Jian Wu. Research progress on piperidine-containing compounds as agrochemicals[J]. Chinese Chemical Letters, ;2025, 36(1): 109855. doi: 10.1016/j.cclet.2024.109855 shu

Research progress on piperidine-containing compounds as agrochemicals

    * Corresponding author.
    E-mail address: jwu6@gzu.edu.cn (J. Wu).
  • Received Date: 9 January 2024
    Revised Date: 26 March 2024
    Accepted Date: 2 April 2024
    Available Online: 3 April 2024

Figures(8)

  • Piperidine is a crucial pharmacophore and a special scaffold in the realm of drug discovery. Its flexibility increases the molecule's capability to bind to the receptor. The piperidine-containing compounds are distinguished by their remarkable activity, and are increasingly becoming a vital category of pesticides. In this review, the research progress of piperidines in the discovery of pesticides was updated according to their active characteristics. The structure-activity relationships (SARs), and mechanisms of action of piperidine-containing compounds were also discussed. This article is meant to enable readers to quickly understand piperidines, while providing ideas for creating piperidines with novel structures and unique mechanisms of action.
  • 加载中
    1. [1]

      N.A. Frolov, A.N. Vereshchagin, Int. J. Mol. Sci. 24 (2023) 2937.  doi: 10.3390/ijms24032937

    2. [2]

      M.G.P. Buffat, Tetrahedron 60 (2004) 1701–1729.  doi: 10.1016/j.tet.2003.11.043

    3. [3]

      M. Lankelma, A.M. Olivares, B. de Bruin, Chem. Eur. J. 25 (2019) 5658–5663.  doi: 10.1002/chem.201900587

    4. [4]

      S.S. Sajadikhah, M.T. Maghsoodlou, N. Hazeri, S.M. Habibi-Khorassani, S.J. Shams-Najafi, Monatsh. Chem. 143 (2012) 939–945.  doi: 10.1007/s00706-011-0671-7

    5. [5]

      M.B. Smith, J. March, March’s Advanced Organic Chemistry, John Wiley Sons, Inc., New Jersey, 2007, pp. 872–892.

    6. [6]

      A.M.M.M. Faisca, Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, John Wiley Sons, Inc., Hoboken, 2021, pp. 171–249.

    7. [7]

      H. Franquet-Griell, C. Gómez-Canela, F. Ventura, S. Lacorte, Environ. Pollut. 229 (2017) 505–515.  doi: 10.1016/j.envpol.2017.06.011

    8. [8]

      E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257–10274.  doi: 10.1021/jm501100b

    9. [9]

      H. Furukawa, Y. Miyamoto, Y. Hirata, et al., J. Med. Chem. 63 (2020) 10352–10379.  doi: 10.1021/acs.jmedchem.0c00843

    10. [10]

      J.I. Yun, H.J. Jung, C.S. Yun, et al., B. Korean Chem. Soc. 36 (2015) 1929–1932.  doi: 10.1002/bkcs.10357

    11. [11]

      L.F. Hennequin, E.S.E. Stokes, A.P. Thomas, et al., J. Med. Chem. 45 (2002) 1300–1312.  doi: 10.1021/jm011022e

    12. [12]

      A.E. Shchekotikhin, A.A. Shtil, Y.N. Luzikov, et al., Bioorgan. Med. Chem. 13 (2005) 2285–2291.  doi: 10.1016/j.bmc.2004.12.044

    13. [13]

      E. Khazanov, Y. Barenholz, D. Gibson, Y. Najajreh, J. Med. Chem. 45 (2002) 5196–5204.  doi: 10.1021/jm020817y

    14. [14]

      G.L. Balaji, V. Vijayakumar, K. Rajesh, Arabian J. Chem. 9 (2016) S1101–S1104.  doi: 10.1016/j.arabjc.2011.12.011

    15. [15]

      M. Srinivasan, S. Perumal, S. Selvaraj, Chem. Pharm. Bull. 54 (2006) 795–801.  doi: 10.1248/cpb.54.795

    16. [16]

      H.I. El-Subbagh, S.M. Abu-Zaid, M.A. Mahran, F.A. Badria, A.M. Al-Obaid, J. Med. Chem. 43 (2000) 2915–2921.  doi: 10.1021/jm000038m

    17. [17]

      S. Liu, F. Wang, J. Yang, et al., Arch Pharm. 356 (2023) 2300416.  doi: 10.1002/ardp.202300416

    18. [18]

      X. Zhang, C. Zhang, L. Tang, et al., Chin. Chem. Lett. 31 (2020) 136–140.  doi: 10.1016/j.cclet.2019.04.045

    19. [19]

      P. Ji, A.S. Csinos, L.L. Hickman, U. Hargett, Plant. Dis. 98 (2014) 1551–1554.  doi: 10.1094/PDIS-02-14-0172-RE

    20. [20]

      J.B. Pasteris, A.M. Hanagan, R. Shapiro, Patent, WO2008013925A2, 2008.

    21. [21]

      L. Huang, P. Zhao, J.J. Tan, Zhejiang Chem. Ind. 53 (2022) 19–25.  doi: 10.1007/978-3-031-14595-7_3

    22. [22]

      M. Muehlebach, A. Buchholz, W. Zambach, et al., Pest. Manag. Sci. 76 (2020) 3440–3450.  doi: 10.1002/ps.5743

    23. [23]

      F. Zhang, S. Bai, H. Wang, W. Liu, J. Wang, Sci. Rep. 9 (2019) 1625.  doi: 10.1038/s41598-018-38221-y

    24. [24]

      L. Lian, Y.R. Zheng, B. He, et al., Patent, CN105218449A, 2016.

    25. [25]

      E.F.S. Authority, EFSA J. 14 (2016) e04504.

    26. [26]

      L. Lian, H. Wang, F. Zhang, et al., J. Agr. Food Chem. 71 (2023) 8825–8833.  doi: 10.1021/acs.jafc.3c01239

    27. [27]

      V. Mahdavi, H. Gordan, A. Heidari, J. Food Compos Anal. 121 (2023) 105353.  doi: 10.1016/j.jfca.2023.105353

    28. [28]

      A. Mishra, J.K. Punia, C. Bladen, G.W. Zamponi, R.K. Goel, Channels 9 (2015) 317–323.  doi: 10.1080/19336950.2015.1092836

    29. [29]

      M.R. Siegel, H.D. Sisler, Nature 200 (1963) 675–676.  doi: 10.1038/200675a0

    30. [30]

      T. Kodama, T. Tsukaguchi, M. Yoshida, O. Kondoh, H. Sakamoto, Cancer. Lett. 351 (2014) 215–221.  doi: 10.1016/j.canlet.2014.05.020

    31. [31]

      S. Peters, D.R. Camidge, A.T. Shaw, et al., New. Engl. J. Med. 377 (2017) 829–838.  doi: 10.1056/NEJMoa1704795

    32. [32]

      L.J. Scott, Drugs 80 (2020) 741–746.  doi: 10.1007/s40265-020-01301-3

    33. [33]

      X.Q. Liu, Y.Q. Liu, X.S. Shao, et al., Chin. Chem. Lett. 27 (2016) 7–10.  doi: 10.1016/j.cclet.2015.10.002

    34. [34]

      Y.F. Fan, W.W. Zhang, X.S. Shao, et al., Chin. Chem. Lett. 26 (2015) 1–5.  doi: 10.1016/j.cclet.2014.10.019

    35. [35]

      H. Mei, K. Aradi, L. Kiss, J. Han, Chin. Chem. Lett. 34 (2023) 108657.  doi: 10.1016/j.cclet.2023.108657

    36. [36]

      G. Pemawat, A. Bhatnagar, R.K. Khangarot, Mini-Rev Org. Chem. 21 (2024) 346–369.  doi: 10.2174/1570193x20666230213123453

    37. [37]

      P. Goel, O. Alam, M.J. Naim, et al., Eur. J. Med. Chem. 157 (2018) 480–502.  doi: 10.1016/j.ejmech.2018.08.017

    38. [38]

      M. Abdelrahim, S. Konduri, R. Basha, P.A. Philip, C.H. Baker, Int. J. Oncol. 36 (2009) 5–18.

    39. [39]

      B.T. Green, S.T. Lee, K.E. Panter, D.R. Brown, Food. Chem. Toxicol. 50 (2012) 2049–2055.  doi: 10.1016/j.fct.2012.03.049

    40. [40]

      C.X. Zhu, X.L. Jiang, D.Y. Sun, Fine. Spec. Chem. 16 (2002).

    41. [41]

      K. Barrett-Bee, G. Dixon, Acta Biochim. Pol. 42 (1995) 465–479.  doi: 10.18388/abp.1995_4900

    42. [42]

      R.I. Baloch, E.I. Mercer, Phytochemistry. 26 (1987) 663–668.  doi: 10.1016/S0031-9422(00)84762-7

    43. [43]

      Q.F. Wu, Z.S. Hao, Z.J. Fan, Chin. J. Pestic. Sci. 21 (2019) 595–608.

    44. [44]

      G. Qiao, S.P. Wei, Z.Q. Ji, Chin. J. Pestic. Sci. 14 (2012) 440–444.

    45. [45]

      D.L. Xie, C.F. Ni, C.X. Zhu, K.H. Huang, D. Kong, Chin. J. Biol. Control. 6 (1990) 74–77.

    46. [46]

      Y. Ren, D. Li, S. Jiang, et al., Phytopathology, 111 (2021) 2238–2249.  doi: 10.1094/phyto-02-21-0073-r

    47. [47]

      Y. Cohen, A.E. Rubin, M. Galperin, Phytoparasitica, 46 (2018) 689–704.  doi: 10.1007/s12600-018-0702-6

    48. [48]

      M. Kono, T. Matsumoto, T. Kawamura, et al., Bioorgan. Med. Chem. 21 (2013) 28–41.  doi: 10.1016/j.bmc.2012.11.006

    49. [49]

      X. Feng, K. Wang, L. Pan, et al., J. Agric. Food Chem. 66 (2018) 8489–8495.  doi: 10.1021/acs.jafc.8b02056

    50. [50]

      J. Miao, Y. Chi, D. Lin, B.M. Tyler, X. Liu, Phytopathology, 108 (2018) 1412–1419.  doi: 10.1094/phyto-01-18-0010-r

    51. [51]

      R.J. Bittner, A.L. Mila, Crop. Prot. 93 (2017) 9–18.  doi: 10.1016/j.cropro.2016.10.019

    52. [52]

      V.M. Olkkonen, S. Li, Prog. Lipid Res. 52 (2013) 529–538.  doi: 10.1016/j.plipres.2013.06.004

    53. [53]

      V.M. Olkkonen, M. Johansson, M. Suchanek, et al., Biochem. Soc. T. 34 (2006) 389–391.  doi: 10.1042/BST0340389

    54. [54]

      Y. Gao, X. Zhao, X. Sun, et al., J. Agric. Food Chem. 69 (2021) 3289–3297.  doi: 10.1021/acs.jafc.0c04163

    55. [55]

      Q. Peng, Z. Wang, P. Liu, et al., Int. J. Mol. Sci. 21 (2020) 1223.  doi: 10.3390/ijms21041223

    56. [56]

      B. Olenik, S. Hillebrand, P. asnaire, M. Weiss, U. Wachendorff-neumann, Patent, EP3057967A1, 2016.

    57. [57]

      C. Lamberth, S. Trah, L. Quaranta, et al., Patent, WO2014154530A1, 2014.

    58. [58]

      F. Cederbaum., Patent, WO2014118142A1, 2014.

    59. [59]

      T. Tsuchiya, S. Hoffmann, P. Cristau, et al., Patent, WO2012025557A1, 2012.

    60. [60]

      D. Lin, Z. Xue, J. Miao, Z. Huang, X. Liu, J. Agric. Food Chem. 68 (2020) 13651–13660.  doi: 10.1021/acs.jafc.0c05531

    61. [61]

      J. Miao, M. Cai, X. Dong, et al., Front. Microbiol. 7 (2016) 615.

    62. [62]

      L.J. Andreassi II, S. Gutteridge, O.S. Pember, A.J. Sweigard, Patent, WO2013009971A1, 2013.

    63. [63]

      Z. Wang, Q. Ke, K. Tao, et al., J. Agric. Food Chem. 70 (2022) 14140–14147.  doi: 10.1021/acs.jafc.2c06707

    64. [64]

      J. Miao, X. Liu, G. Li, X. Du, X. Liu, Pest. Manag. Sci. 76 (2020) 2434–2440.  doi: 10.1002/ps.5784

    65. [65]

      J. Miao, C. Li, X. Liu, et al., J. Agric. Food Chem. 69 (2021) 3827–3835.  doi: 10.1021/acs.jafc.0c05119

    66. [66]

      C. Li, X. Liu, Z. Liu, et al., J. Agric. Food Chem. 70 (2022) 4881–4888.  doi: 10.1021/acs.jafc.1c08199

    67. [67]

      J. Miao, X. Dong, D. Lin, et al., Pest. Manag. Sci. 72 (2015) 1572–1577.

    68. [68]

      Z. Wang, X. Lv, R. Wang, et al., Pest. Manag. Sci. 79 (2022) 381–390.

    69. [69]

      T. Qu, T.L. Grey, A.S. Csinos, P. Ji, Plant. Dis. 100 (2016) 1931–1936.  doi: 10.1094/PDIS-03-16-0370-RE

    70. [70]

      J.L. Li, L.M. Zhou, M.Q. Gao, et al., Pestic. Biochem. Phys. 169 (2020) 104673.  doi: 10.1016/j.pestbp.2020.104673

    71. [71]

      J.L. Li, J.F. Yang, L.M. Zhou, et al., J. Agric. Food Chem. 71 (2023) 9519–9527.  doi: 10.1021/acs.jafc.3c00990

    72. [72]

      Q. Wu, B. Zhao, Z. Fan, et al., J. Agric. Food Chem. 67 (2019) 1360–1370.  doi: 10.1021/acs.jafc.8b06054

    73. [73]

      L.F. Yun, Y.J. Zhu, Z.J. Fan, et al., Chin. J. Struct. Chem. 34 (2015) 659–666.

    74. [74]

      S. Sulzer-Mosse, F. Cederbaum, C. Lamberth, et al., Bioorgan. Med. Chem. 23 (2015) 2129–2138.  doi: 10.1016/j.bmc.2015.03.007

    75. [75]

      W.S. Choi, J. Korean. Soc. Appl. Bio. Chem. 53 (2010) 206–214.

    76. [76]

      S.W. Nam, J. Korean. Soc. Appl. Bio. Chem. 54 (2011) 395–402.  doi: 10.3839/jksabc.2011.062

    77. [77]

      S.W. Nam, G.R. Lee, T.J. Kim, B.J. Chung, W.S. Choi, Korean J. Pestic. Sci. 16 (2012) 1–10.  doi: 10.7585/kjps.2012.16.1.001

    78. [78]

      W.S. Choi, S.W. Nam, I.D. Kim, et al., J. Chem-Ny. 2015 (2015) 1–6.

    79. [79]

      C. Ding, Y. Pan, X. Yin, C. Tan, X. Wang, Chin. J. Org. Chem. 39 (2019) 2062.  doi: 10.6023/cjoc201901009

    80. [80]

      C. Ding, Y. Pan, C. Tan, Chin. J. Org. Chem. 40 (2020) 528.  doi: 10.6023/cjoc201907034

    81. [81]

      C. Ding, Y. Pan, X. Yin, C. Tan, Chin. J. Org. Chem. 39 (2019) 2099.  doi: 10.6023/cjoc201812027

    82. [82]

      Q. Bian, R.Q. Zhao, X.J. Peng, et al., J. Agric. Food Chem. 69 (2021) 3848–3858.  doi: 10.1021/acs.jafc.0c07581

    83. [83]

      P. Qi, N. Wang, T. Zhang, et al., Int. J. Mol. Sci. 24 (2023) 2897.  doi: 10.3390/ijms24032897

    84. [84]

      J.F. Tang, H.W. Chi, J.T. Wu, J. Han, Y. Liu, Patent, CN110551124A, 2019.

    85. [85]

      S. Ghosh, J.R. Greenwood, G.C. Harriman, S.M. Leit De Moradei, Patent, WO 2017091617A1, 2017.

    86. [86]

      X. Zhang, P. Lei, T. Sun, et al., Molecules. 22 (2017) 2085.  doi: 10.3390/molecules22122085

    87. [87]

      Y. Ling, X. Zhang, X. Yang, et al., Chin. J. Org. Chem. 39 (2019) 2965.  doi: 10.6023/cjoc201903031

    88. [88]

      H.W. Liu, Q.T. Ji, G.G. Ren, et al., J. Agric. Food Chem. 68 (2020) 12558–12568.  doi: 10.1021/acs.jafc.0c02528

    89. [89]

      T. Pitterna, M. Muehlebach, H.J. Schaetzer, Patent, WO2011067131A1, 2011.

    90. [90]

      T. Pitterna, M. Muehlebach, H.J. Schaetzer, Patent, US8703165B2, 2014.

    91. [91]

      T. Pitterna, M. Muehlebach, H.J. Schaetzer, Patent, US8541343B2, 2013.

    92. [92]

      L.F. Mao, S.H. Jia, W. Li, et al., Patent, CN105017252A, 2015.

    93. [93]

      C. Ding, Y. Pan, X. Yin, C. Tan, G. Zhang, Chin. J. Org. Chem. 39 (2019) 836.  doi: 10.6023/cjoc201809009

    94. [94]

      R. Tyagi, A.R. Maddirala, M. Elfawal, et al., ACS Infect. Dis. 4 (2018) 1130–1145.  doi: 10.1021/acsinfecdis.8b00090

    95. [95]

      Y.J. Zhu, X.F. Guo, Z.J. Fan, et al., RSC Adv. 6 (2016) 112704–112711.  doi: 10.1039/C6RA24342H

    96. [96]

      J.Y. Wang, B.L. Xu, S.Y. Si, H. Li, G.H. Song, Mol. Divers. 18 (2014) 887–893.  doi: 10.1007/s11030-014-9531-9

    97. [97]

      D.I. Knueppel, M.C. Yap, M.T. Sullenberger, et al., Patent, WO2015175719A1, 2015.

    98. [98]

      I.A. Arif, A. Ahamed, R.S. Kumar, A. Idhayadhulla, A. Manilal, Saudi J. Biol. Sci. 26 (2019) 673–680.  doi: 10.1016/j.sjbs.2017.12.007

    99. [99]

      H. Qu, M. Lv, X. Yu, X. Lian, H. Xu, Sci. Rep. 5 (2015) 13077.  doi: 10.1038/srep13077

    100. [100]

      A.H. Tantawy, S.M. Farag, L. Hegazy, H. Jiang, M.Q. Wang, Bioorg. Chem. 94 (2020) 103464.  doi: 10.1016/j.bioorg.2019.103464

    101. [101]

      H. Qu, M. Lv, H. Xu, Mini-Rev. Med. Chem. 15 (2015) 145–156.  doi: 10.2174/1389557515666150101100509

    102. [102]

      M. Lv, S. Li, H. Wen, Y. Wang, J. Du, H. Xu, Pest Manag. Sci. 79 (2023) 3459–3470.  doi: 10.1002/ps.7521

    103. [103]

      I. Hamamoto, J. Takahashi, M. Yano, D. Hanai, T. Iwasa, Patent, WO2005095380A1, 2005.

    104. [104]

      I. Hamamoto, J. Takahashi, M. Yano, et al., Patent, WO2007040280A1, 2007.

    105. [105]

      I. Hamamoto, K. Koizumi, M. Kawaguchi, et al., Patent, WO2011105506A1, 2011.

    106. [106]

      T.W. Wu, H.J. Ma, H.K. Tian, J.P. Ni, Z. Yun, Chin. J. Org. Chem. 30 (2010) 713–718.

    107. [107]

      Y. Endo, G. Uenaka, Y. Shirai, Patent, WO2008026658A1, 2008.

    108. [108]

      L.P. Molleyres, J. Cassayre, F. Cederbaum, P. Maienfisch, Patent, WO2005061500A1, 2005.

    109. [109]

      T. Pitterna, J. Cassayre, L.P. Molleyres, P. Maienfisch, Patent, WO2007085945A1, 2007.

    110. [110]

      J. Cassayre, P. Maienfisch, F. Cederbaum, L.P. Molleyres, Patent, US8338443B2, 2012.

    111. [111]

      Y.J. Cassayre, T. Pitterna, C. Corsi, P. Maienfisch, Patent, WO2011003684, 2011.

    112. [112]

      T. Yuyama, S. Shirakura, K. Ishizuka, Zeitschrift für Naturforschung C. 46 (1991) 887–892.  doi: 10.1515/znc-1991-9-1027

    113. [113]

      J.M. Leah, J.C. Caseley, C.R. Riches, B. Valverde, Pest Manag. Sci. 43 (1995) 347–354.  doi: 10.1002/ps.2780430415

    114. [114]

      T. Müller, H. Helmke, M.C. Sullenberger, et al., Patent, WO2018178012A1, 2018.

    115. [115]

      A.D. Satterfield, J.F. Bereznak, M.J. Campbell, Patent, WO2016003997A1, 2016.

    116. [116]

      N.R. Smith, M. Muehlebach, J.H. Schaetzer, Patent, WO2013079672A1, 2013.

    117. [117]

      T. Fan, C. Chen, T. Fan, F. Liu, Q. Peng, J. Hazard Mater. 297 (2015) 340–346.  doi: 10.1016/j.jhazmat.2015.05.034

    118. [118]

      A. Zajac, R. Kukawka, A. Pawlowska-Zygarowicz, O. Stolarska, M. Smiglak, Green. Chem. 20 (2018) 4764–4789.  doi: 10.1039/c8gc01424h

    119. [119]

      J. Pernak, M. Niemczak, K. Materna, et al., RSC Adv. 6 (2016) 7330–7338.  doi: 10.1039/C5RA23997D

    120. [120]

      M.S.B. Brandao, Encycl. Surf. Colloid Sci. (2015) 336–351.

    121. [121]

      M. Wojcieszak, A. Syguda, A. Lewandowska, et al., J. Agric. Food Chem. 71 (2023) 4550–4560.  doi: 10.1021/acs.jafc.3c00356

    122. [122]

      W. Rademacher, Annu. Rev. Plant Physiol. Plant Mol. Biol. 51 (2000) 501–531.  doi: 10.1146/annurev.arplant.51.1.501

    123. [123]

      Z.J. Fang, Y.J. Zhu, S. Zhou, et al., Patent, CN108558857A, 2018.

    124. [124]

      S. Bai, S. Liu, Y. Zhu, K. Zhao, Q. Wu, Synlett 29 (2018) 1921–1925.  doi: 10.1055/s-0037-1609910

    125. [125]

      S. Yun, B. Yang, J.D. Anair, et al. Nat. Neurosci. 26 (2023) 1417–1428.  doi: 10.1038/s41593-023-01390-9

    126. [126]

      J. Carlier, R. Giorgetti, M.R. Varì, et al. Eur. Rev. Med. Pharmacol. Sci. 23 (2019) 3–15.

    127. [127]

      W. Xiong, L. Qi, D. Si, et al., Nanoscale 13 (2021) 13473–13486.  doi: 10.1039/d1nr02880d

  • 加载中
    1. [1]

      Ping SunYuanqin HuangShunhong ChenXining MaZhaokai YangJian Wu . Indole derivatives as agrochemicals: An overview. Chinese Chemical Letters, 2024, 35(7): 109005-. doi: 10.1016/j.cclet.2023.109005

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    4. [4]

      Jian SongShenghui WangQiuge LiuXiao WangShuo YuanHongmin LiuSaiyang ZhangN-Benzyl arylamide derivatives as novel and potent tubulin polymerization inhibitors against gastric cancers: Design, structure–activity relationships and biological evaluations. Chinese Chemical Letters, 2025, 36(2): 109678-. doi: 10.1016/j.cclet.2024.109678

    5. [5]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    6. [6]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    7. [7]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    8. [8]

      Fangping YangJin ShiYuansong WeiQing GaoJingrui ShenLichen YinHaoyu Tang . Mixed-charge glycopolypeptides as antibacterial coatings with long-term activity. Chinese Chemical Letters, 2025, 36(2): 109746-. doi: 10.1016/j.cclet.2024.109746

    9. [9]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    12. [12]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    13. [13]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    14. [14]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    15. [15]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    16. [16]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    17. [17]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    18. [18]

      Guo-Ping YinYa-Juan LiLi ZhangLing-Gao ZengXue-Mei LiuChang-Hua Hu . Citrinsorbicillin A, a novel homotrimeric sorbicillinoid isolated by LC-MS-guided with cytotoxic activity from the fungus Trichoderma citrinoviride HT-9. Chinese Chemical Letters, 2024, 35(8): 109035-. doi: 10.1016/j.cclet.2023.109035

    19. [19]

      Simin WeiYaqing YangJunjie LiJialin WangJinlu TangNingning WangZhaohui Li . The Mn/Yb/Er triple-doped CeO2 nanozyme with enhanced oxidase-like activity for highly sensitive ratiometric detection of nitrite. Chinese Chemical Letters, 2024, 35(6): 109114-. doi: 10.1016/j.cclet.2023.109114

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(0)
  • Abstract views(122)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return