Advances in theoretical calculations of organic thermoelectric materials
-
* Corresponding authors.
E-mail addresses: mayingqiao@iccas.ac.cn (Y. Ma), dicha@iccas.ac.cn (C.-a. Di).
Citation:
Shaohua Zhang, Liyao Liu, Yingqiao Ma, Chong-an Di. Advances in theoretical calculations of organic thermoelectric materials[J]. Chinese Chemical Letters,
;2024, 35(8): 109749.
doi:
10.1016/j.cclet.2024.109749
N. Toshima, S. Ichikawa, J. Electron. Mater. 44 (2014) 384–390.
Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv. Mater. 26 (2014) 6829–6851.
doi: 10.1002/adma.201305371
E.H. Suh, J.G. Oh, J. Jung, et al., Adv. Energy Mater. 10 (2020) 2002521.
doi: 10.1002/aenm.202002521
J. Wu, Y. Sun, W. Xu, Q. Zhang, Synth. Met. 189 (2014) 177–189182.
doi: 10.1016/j.synthmet.2014.01.007
I. Petsagkourakis, K. Tybrandt, X. Crispin, et al., Sci. Technol. Adv. Mat. 19 (2018) 836–862.
doi: 10.1080/14686996.2018.1530938
K. Shi, F. Zhang, C. Di, et al., J. Pei, J. Am. Chem. Soc. 137 (2015) 6979–6982.
doi: 10.1021/jacs.5b00945
R.A. Schlitz, F.G. Brunetti, A.M. Glaudell, et al., Adv. Mater. 26 (2014) 2825–2830.
doi: 10.1002/adma.201304866
B. Russ, M.J. Robb, F.G. Brunetti, et al., Adv. Mater. 26 (2014) 3473–3477.
doi: 10.1002/adma.201306116
O. Bubnova, Z.U. Khan, A. Malti, et al., Nat. Mater. 10 (2011) 429–433.
doi: 10.1038/nmat3012
I. Petsagkourakis, K. Tybrandt, X. Crispin, et al., Sci. Technol. Adv. Mater. 19 (2018) 836–862.
doi: 10.1080/14686996.2018.1530938
Y. Ma, Y. Zou, C. Di, D. Zhu, Introduction of organic thermoelectrics, in: D. Zhu (Ed.), Organic Thermoelectrics: From Materials to Devices, WILEY-VCH GmbH, Weinheim, 2022, pp. 3–24.
J. Chen, D. Wang, Z. Shuai, J. Chem. Theory Comput. Theory 8 (2012) 3338–3347.
doi: 10.1021/ct3004436
Y. Ge, R. Liu, Z. Shuai, Appl. Phys. Lett. 118 (2021) 123301.
doi: 10.1063/5.0043863
J. Ding, Z. Liu, W. Zhao, et al., Angew. Chem. Int. Ed. 58 (2019) 18994–18999.
doi: 10.1002/anie.201911058
D. Wang, J. Ding, X. Dai, et al., Adv. Mater. 35 (2023) e2208215.
doi: 10.1002/adma.202208215
J. Han, Y. Jiang, E. Tiernan, et al., Angew. Chem. Int. Ed. 62 (2023) e202219313.
doi: 10.1002/anie.202219313
Z. Yu, Y. Lu, Z. Wang, et al., Sci. Adv. 9 (2023) 3495.
doi: 10.1126/sciadv.adf3495
T. Ma, B. Dong, J.W. Onorato, et al., J. Polym. Sci. 59 (2021) 2797–2808.
doi: 10.1002/pol.20210608
Y. Ge, W.T. Li, J.J. Ren, Z.G. Shuai, J. Chem. Theory Comput. Theory 18 (2022) 6437.
doi: 10.1021/acs.jctc.2c00651
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Nat. Rev. Mater. 1 (2016) 16050.
doi: 10.1038/natrevmats.2016.50
H. Bronstein, C.B. Nielsen, B.C. Schroeder, I. McCulloch, Nat. Rev. Chem. 4 (2020) 66–77.
doi: 10.1038/s41570-019-0152-9
J. Liu, L. Qiu, R. Alessandri, et al., Adv. Mater. 30 (2018) 1704630.
doi: 10.1002/adma.201704630
W. Shi, T. Zhao, J. Xi, et al., J. Am. Chem. Soc. 137 (2015) 12929–12938.
doi: 10.1021/jacs.5b06584
C. Yang, Y. Ding, D. Huang, et al., Nat. Commun. 11 (2020) 3292.
doi: 10.1038/s41467-020-17063-1
X. Zhao, D. Madan, Y. Cheng, et al., Adv. Mater. 29 (2017) 1606928.
doi: 10.1002/adma.201606928
Y. Bao, Y. Sun, F. Jiao, W. Hu, Adv. Electron. Mater. 9 (2023) 2201310.
doi: 10.1002/aelm.202201310
L. Ren, P. Gao, J. Funct. Mater. 52 (2021) 2066–2077.
M.W. Li, Y.Q. Shi, ChemPlusChem 88 (2023) e202300215.
doi: 10.1002/cplu.202300215
D.F. Yuan, W.Y. Liu, X.Z. Zhu, Chem. Soc. Rev. 52 (2023) 3842–3872.
doi: 10.1039/D2CS01027E
J.H. Tang, Y.H. Pai, Z.Q. Liang, ACS Energy Lett. 7 (2022) 4299–4324.
doi: 10.1021/acsenergylett.2c02119
A.D. Scaccabarozzi, A. Basu, F. Anies, et al., Chem. Rev. 122 (2022) 4420–4492.
doi: 10.1021/acs.chemrev.1c00581
Y. Ma, C. Di, D. Zhu, Adv. Physics. Res. 2 (2023) 2300027.
doi: 10.1002/apxr.202300027
X. Bao, S. Hou, Z.X. Wu, et al., J. Mater. Sci. Technol. 148 (2023) 64–74.
doi: 10.1016/j.jmst.2022.10.081
Z. Zhang, N. Qi, Y.C. Wu, Z.Q. Chen, ACS Appl. Mater. Interfaces 13 (2021) 44409–44417.
doi: 10.1021/acsami.1c12832
G.H. Madsen, J. Carrete, M.J. Verstraete, Comput. Phys. Commun. 231 (2018) 140–145.
doi: 10.1016/j.cpc.2018.05.010
G.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2016) 67–71.
J. Bardeen, W. Shockley, Phys. Rev. 80 (1950) 72–80.
doi: 10.1103/PhysRev.80.72
A. Suwardi, D. Bash, H.K. Ng, et al., J. Mater. Chem. A 7 (2019) 23762–23769.
doi: 10.1039/C9TA05967A
L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Adv. Funct. Mater. 33 (2022) 2210770.
O. Badami, C. Medina-Bailon, S. Berrada, et al., Appl. Sci. 9 (2019) 1895.
doi: 10.3390/app9091895
R. Fang, X. Cui, C. Stampfl, S.P. Ringer, R. Zheng, Phys. Chem. Chem. Phys. 22 (2020) 2276–2282.
doi: 10.1039/C9CP05828A
W. Shi, J. Chen, J. Xi, D. Wang, Z. Shuai, Chem. Mater. 26 (2014) 2669–2677.
doi: 10.1021/cm500429w
W. Liang, A.I. Hochbaum, M. Fardy, et al., Nano Lett. 9 (2009) 1689–1693.
doi: 10.1021/nl900377e
A. Shafique, Y.H. Shin, Sci. Rep. 7 (2017) 506.
doi: 10.1038/s41598-017-00598-7
J.E. Northrup, Phys. Rev. B 76 (2007) 245202.
doi: 10.1103/PhysRevB.76.245202
M. Shahid, T. McCarthy-Ward, J. Labram, et al., Chem. Sci. 3 (2012) 181–185.
doi: 10.1039/C1SC00477H
J. Xi, M. Long, L. Tang, D. Wang, Z. Shuai, Nanoscale 4 (2012) 4348–4369.
doi: 10.1039/c2nr30585b
V. Coropceanu, J. Cornil, D.A. da Silva, et al., Chem. Rev. 107 (2007) 926–952.
doi: 10.1021/cr050140x
J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104 (2004) 4971–5003.
doi: 10.1021/cr040084k
Y.B. Song, C.A. Di, X.D. Yang, et al., J. Am. Chem. Soc. 128 (2006) 15940–15941.
doi: 10.1021/ja064726s
W.Q. Deng, W.A. Goddard, J. Phys. Chem. B 108 (2004) 8614–8621.
doi: 10.1021/jp0495848
G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127 (2005) 2339–2350.
doi: 10.1021/ja0461421
J.E. Norton, J.L. Brédas, J. Am. Chem. Soc. 130 (2008) 12377–12384.
doi: 10.1021/ja8017797
M. Moral, A. Garzón, J. Canales-Vázquez, J.C. Sancho-García, J. Phys. Chem. C 120 (2016) 24583–24596.
doi: 10.1021/acs.jpcc.6b07240
M. Moral, A. Garzón, G. García, J.M. Granadino-Roldán, M. Fernández-Gómez, J. Phys. Chem. C 119 (2015) 4588–4599.
doi: 10.1021/jp5120948
D.P. McMahon, A. Troisi, J. Phys. Chem. Lett. 1 (2010) 941–946.
doi: 10.1021/jz1001049
N. Lu, L. Li, M. Liu, Phys. Chem. Chem. Phys. 19 (2017) 16283.
doi: 10.1039/C7CP90124K
Z. Shuai, L. Wang, Q. Li, Adv. Mater. 23 (2011) 1145–1153.
doi: 10.1002/adma.201003503
L. Dong, C. Bao, S. Hu, et al., Nanomaterials 12 (2022) 1282.
doi: 10.3390/nano12081282
A. Casian, I. Sanduleac, J. Electron. Mater. 43 (2014) 3740–3745.
doi: 10.1007/s11664-014-3105-6
A. Casian, I. Sanduleac, Mater. Today: Proc. 2 (2015) 504–509.
doi: 10.1016/j.matpr.2015.05.069
Y. Wang, J. Zhou, R.G. Yang, J. Phys. Chem. C 115 (2011) 24418–24428.
doi: 10.1021/jp208490q
Y. Ma, A. Chinchore, A. Smith, M. Barral, V. Ferrari, Nano Lett. 18 (2018) 158.
doi: 10.1021/acs.nanolett.7b03721
Y. Ma, D. Hunt, K. Meng, et al., Phys. Rev. Mater. 4 (2020) 064006.
doi: 10.1103/PhysRevMaterials.4.064006
D. Di Nuzzo, C. Fontanesi, R. Jones, et al., Nat. Commun. 6 (2015) 6460.
doi: 10.1038/ncomms7460
C. Li, H. Ma, Z. Tian, Appl. Therm. Eng. 111 (2017) 1441–1447.
doi: 10.1016/j.applthermaleng.2016.08.154
J. Wu, Y. Sun, W. Xu, Q. Zhang, Synth. Met. 26 (2014) 6829–6851.
Y. Liu, W. Shi, T. Zhao, D. Wang, Z. Shuai, J. Phys. Chem. Lett. 10 (2019) 2493–2499.
doi: 10.1021/acs.jpclett.9b00716
X. Wang, T. Garcia, S. Monaco, B. Schatschneider, N. Marom, CrystEngComm 18 (2016) 7353–7362.
doi: 10.1039/C6CE00873A
S.J. Wang, M. Panhans, I. Lashkov, et al., Sci. Adv. 8 (2022) eabl9264.
doi: 10.1126/sciadv.abl9264
D.B. Zhu, P. Wang, M.X. Wan, et al., Proceedings of the Yamada Conference XV on Physics and Chemistry of Quasi One-Dimensional Conductors, 1986, pp. 281–284.
E. Dalas, S. Sakkopoulos, E. Vitoratos, J. Mater. Sci. 29 (1994) 4131–4133.
doi: 10.1007/BF00355982
S. Hwang, W.J. Potscavage, Y.S. Yang, et al., Phys. Chem. Chem. Phys. 18 (2016) 29199–29207.
doi: 10.1039/C6CP04572C
J. Wang, Y. Wang, Q. Li, et al., CCS Chem. 3 (2021) 2482–2493.
doi: 10.31635/ccschem.021.202101070
Y. Wang, W. Hao, W. Huang, et al., J. Phys. Chem. Lett. 11 (2020) 3928–3933.
doi: 10.1021/acs.jpclett.0c00678
R. Liu, Y. Ge, D. Wang, Z. Shuai, CCS Chem. 3 (2021) 1477–1483.
doi: 10.31635/ccschem.021.202100813
M. Bashi, H.A. Rahnamaye Aliabad, Opt. Quantum Electron. 53 (2021) 202.
doi: 10.1007/s11082-021-02853-8
Z. Shuai, D. Wang, Q. Peng, H. Geng, Acc. Chem. Res. 47 (2014) 3301–3309.
doi: 10.1021/ar400306k
M. Bürkle, T.J. Hellmuth, F. Pauly, Y. Asai, Phys. Rev. B 91 (2015) 165419.
doi: 10.1103/PhysRevB.91.165419
L. Li, O.Y. Kontsevoi, S.H. Rhim, A.J. Freeman, J. Chem. Phys. 138 (2013) 164503.
doi: 10.1063/1.4802033
Y. Ge, D. Wang, Z. Shuai, Liu, CCS Chem. 3 (2021) 1477–1483.
doi: 10.31635/ccschem.021.202100813
X. Yan, M. Xiong, X.Y. Deng, et al., Nat. Commun. 12 (2021) 5723.
doi: 10.1038/s41467-021-26043-y
M. Upadhyaya, C.J. Boyle, D. Venkataraman, Z. Aksamija, Sci. Rep. 9 (2019) 5820.
doi: 10.1038/s41598-019-42265-z
Y. Lu, Y. Zhang, C. Yang, et al., Nat. Commun. 13 (2022) 7240.
doi: 10.1038/s41467-022-34820-6
W. Shi, D. Wang, Z. Shuai, Adv. Electron. Mater. 5 (2019) 1800882.
doi: 10.1002/aelm.201800882
M. Alsufyani, M.A. Stoeckel, X.X. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202113078.
doi: 10.1002/anie.202113078
H. Sadeghi, J. Phys. Chem. C Nanomater. Interfaces 123 (2019) 12556–12562.
doi: 10.1021/acs.jpcc.8b12538
H. Chen, C. Jia, X. Zhu, et al., Nat. Rev. Mater. 8 (2023) 165–185.
R. Almughathawi, S. Hou, Q. Wu, et al., ACS Sens. 6 (2021) 470–476.
doi: 10.1021/acssensors.0c02043
J.P. Bergfield, M.A. Solis, C.A. Stafford, ACS Nano 4 (2010) 5314–5320.
doi: 10.1021/nn100490g
P. Gehring, J.K. Sowa, C. Hsu, et al., Nat. Nanotechnol. 16 (2021) 426–430.
doi: 10.1038/s41565-021-00859-7
H. Arimatsu, Y. Osada, R. Takagi, T. Fujima, Polymers 13 (2021) 2–8.
Y. Chumakov, F. Aksakal, A. Dimoglo, A. Ata, S.A. Palomares-Sánchez, J. Electron. Mater. 45 (2016) 3445–3452.
doi: 10.1007/s11664-016-4540-3
E. Yildirim, G. Wu, X. Yong, et al., J. Mater. Chem. C 6 (2018) 5122–5131.
doi: 10.1039/C8TC00917A
J. Wang, L. Liu, F. Wu, et al., ChemSusChem 15 (2022) e202102420.
doi: 10.1002/cssc.202102420
M. Xiong, X. Yan, J.T. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 8189–8197.
doi: 10.1002/anie.202015216
E. Cho, C. Risko, D. Kim, et al., J. Am. Chem. Soc. 134 (2012) 6177–6190.
doi: 10.1021/ja210272z
G.Y. Ge, J.T. Li, J.R. Wang, et al., Adv. Funct. Mater. 32 (2021) 2108289.
C. Di, W. Xu, D.B. Zhu, Natl. Sci. Rev. 3 (2016) 269–271.
doi: 10.1093/nsr/nww040
W. Jiang, Z.L. Yang, D. Weng, et al., Chin. Chem. Lett. 25 (2014) 849–853.
doi: 10.1016/j.cclet.2014.03.031
S. Luo, Z. Xu, F. Zhong, H. Li, L. Chen, Chin. Chem. Lett. 35 (2024) 109014.
doi: 10.1016/j.cclet.2023.109014
J. Meng, N. Luo, G. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107687.
doi: 10.1016/j.cclet.2022.07.030
N. Sun, Q. Zou, W. Chen, et al., Chin. Chem. Lett. 34 (2023) 108078.
doi: 10.1016/j.cclet.2022.108078
S.H. Talib, Z. Lu, B. Bashir, et al., Chin. Chem. Lett. 34 (2023) 107412.
doi: 10.1016/j.cclet.2022.04.010
Y. Wei, W. Hou, P. Zhang, R.A. Soomro, B. Xu, Chin. Chem. Lett. 33 (2022) 3212–3216.
doi: 10.1016/j.cclet.2021.10.035
D. Yao, Y. Liu, J. Li, H. Zhang, Chin. Chem. Lett. 30 (2019) 277–284.
doi: 10.1016/j.cclet.2018.07.012
G.S. Na, H. Chang, NPJ Comput. 8 (2022) 214.
doi: 10.1038/s41524-022-00897-2
R. Seshadri, T.D. Sparks, APL Mater. 4 (2016) 053206.
doi: 10.1063/1.4944682
L. Lin, Mater. Perform. Charact. 4 (2015) MPC20150014.
J. Carrete, W. Li, N. Mingo, et al., Phys. Rev. X 4 (2014) 011019.
G. Hautier, Comput. Mater. Sci. 163 (2019) 108–116.
doi: 10.1016/j.commatsci.2019.02.040
X. Rodríguez-Martínez, E. Pascual-San-José, M. Campoy-Quiles, Energy Environ. Sci. 14 (2021) 3301–3322.
doi: 10.1039/D1EE00559F
X. Jia, H. Yao, Z. Yang, et al., Appl. Phys. Lett. 123 (2023) 203902.
doi: 10.1063/5.0175233
M.Z. Akgul, G. Konstantatos, A.C.S. Appl, Nano Mater. 4 (2021) 2887.
Y. Xu, L. Jiang, X. Qi, Comput. Mater. Sci. 197 (2021) 110625.
doi: 10.1016/j.commatsci.2021.110625
E. Yildirim, Ö. C. Yelgel, Using Machine Learning Techniques to Discover Novel Thermoelectric Materials, New Materials and Devices for Thermoelectric Power Generation, IntechOpen, 2023, doi:
G. Han, Y. Sun, Y. Feng, et al., Adv. Electron. Mater. 9 (2023) 2300042.
doi: 10.1002/aelm.202300042
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Zhihao HE , Jiafu DING , Yunjie WANG , Xin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390
Zhongchao Zhou , Jian Song , Yinghao Xie , Yuqian Ma , Hong Hu , Hui Li , Lei Zhang , Charles H. Lawrie . DFT calculation for organic semiconductor-based gas sensors: Sensing mechanism, dynamic response and sensing materials. Chinese Chemical Letters, 2025, 36(6): 110906-. doi: 10.1016/j.cclet.2025.110906
Liu Lin , Zemin Sun , Huatian Chen , Lian Zhao , Mingyue Sun , Yitao Yang , Zhensheng Liao , Xinyu Wu , Xinxin Li , Cheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Zhilei Zhang , Yanan Sun , Xiaosong Shi , Xiaozhe Yin , Dawei Liu , Erjing Wang , Jie Liu , Yuanyuan Hu , Lang Jiang . Molecular tailoring towards two-dimensional organic crystals at the thickness limit. Chinese Chemical Letters, 2025, 36(9): 110786-. doi: 10.1016/j.cclet.2024.110786
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Ruike Hu , Kangmin Wang , Junxiang Liu , Jingxian Zhang , Guoliang Yang , Liqiu Wan , Bijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113
Yaojun Li , Yun Li , Shenglong Liao , Yang Li , Shouchun Yin . Revolutionizing cancer therapies with organic photovoltaic non-fullerene acceptors: A deep dive into molecular engineering for advanced phototheranostics. Chinese Chemical Letters, 2025, 36(8): 110832-. doi: 10.1016/j.cclet.2025.110832
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Chengcheng Xie , Chengyi Xiao , Hongshuo Niu , Guitao Feng , Weiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Brandon Bishop , Shaofeng Huang , Hongxuan Chen , Haijia Yu , Hai Long , Jingshi Shen , Wei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202