Advances in theoretical calculations of organic thermoelectric materials
-
* Corresponding authors.
E-mail addresses: mayingqiao@iccas.ac.cn (Y. Ma), dicha@iccas.ac.cn (C.-a. Di).
Citation: Shaohua Zhang, Liyao Liu, Yingqiao Ma, Chong-an Di. Advances in theoretical calculations of organic thermoelectric materials[J]. Chinese Chemical Letters, ;2024, 35(8): 109749. doi: 10.1016/j.cclet.2024.109749
N. Toshima, S. Ichikawa, J. Electron. Mater. 44 (2014) 384–390.
Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv. Mater. 26 (2014) 6829–6851.
doi: 10.1002/adma.201305371
E.H. Suh, J.G. Oh, J. Jung, et al., Adv. Energy Mater. 10 (2020) 2002521.
doi: 10.1002/aenm.202002521
J. Wu, Y. Sun, W. Xu, Q. Zhang, Synth. Met. 189 (2014) 177–189182.
doi: 10.1016/j.synthmet.2014.01.007
I. Petsagkourakis, K. Tybrandt, X. Crispin, et al., Sci. Technol. Adv. Mat. 19 (2018) 836–862.
doi: 10.1080/14686996.2018.1530938
K. Shi, F. Zhang, C. Di, et al., J. Pei, J. Am. Chem. Soc. 137 (2015) 6979–6982.
doi: 10.1021/jacs.5b00945
R.A. Schlitz, F.G. Brunetti, A.M. Glaudell, et al., Adv. Mater. 26 (2014) 2825–2830.
doi: 10.1002/adma.201304866
B. Russ, M.J. Robb, F.G. Brunetti, et al., Adv. Mater. 26 (2014) 3473–3477.
doi: 10.1002/adma.201306116
O. Bubnova, Z.U. Khan, A. Malti, et al., Nat. Mater. 10 (2011) 429–433.
doi: 10.1038/nmat3012
I. Petsagkourakis, K. Tybrandt, X. Crispin, et al., Sci. Technol. Adv. Mater. 19 (2018) 836–862.
doi: 10.1080/14686996.2018.1530938
Y. Ma, Y. Zou, C. Di, D. Zhu, Introduction of organic thermoelectrics, in: D. Zhu (Ed.), Organic Thermoelectrics: From Materials to Devices, WILEY-VCH GmbH, Weinheim, 2022, pp. 3–24.
J. Chen, D. Wang, Z. Shuai, J. Chem. Theory Comput. Theory 8 (2012) 3338–3347.
doi: 10.1021/ct3004436
Y. Ge, R. Liu, Z. Shuai, Appl. Phys. Lett. 118 (2021) 123301.
doi: 10.1063/5.0043863
J. Ding, Z. Liu, W. Zhao, et al., Angew. Chem. Int. Ed. 58 (2019) 18994–18999.
doi: 10.1002/anie.201911058
D. Wang, J. Ding, X. Dai, et al., Adv. Mater. 35 (2023) e2208215.
doi: 10.1002/adma.202208215
J. Han, Y. Jiang, E. Tiernan, et al., Angew. Chem. Int. Ed. 62 (2023) e202219313.
doi: 10.1002/anie.202219313
Z. Yu, Y. Lu, Z. Wang, et al., Sci. Adv. 9 (2023) 3495.
doi: 10.1126/sciadv.adf3495
T. Ma, B. Dong, J.W. Onorato, et al., J. Polym. Sci. 59 (2021) 2797–2808.
doi: 10.1002/pol.20210608
Y. Ge, W.T. Li, J.J. Ren, Z.G. Shuai, J. Chem. Theory Comput. Theory 18 (2022) 6437.
doi: 10.1021/acs.jctc.2c00651
B. Russ, A. Glaudell, J.J. Urban, M.L. Chabinyc, R.A. Segalman, Nat. Rev. Mater. 1 (2016) 16050.
doi: 10.1038/natrevmats.2016.50
H. Bronstein, C.B. Nielsen, B.C. Schroeder, I. McCulloch, Nat. Rev. Chem. 4 (2020) 66–77.
doi: 10.1038/s41570-019-0152-9
J. Liu, L. Qiu, R. Alessandri, et al., Adv. Mater. 30 (2018) 1704630.
doi: 10.1002/adma.201704630
W. Shi, T. Zhao, J. Xi, et al., J. Am. Chem. Soc. 137 (2015) 12929–12938.
doi: 10.1021/jacs.5b06584
C. Yang, Y. Ding, D. Huang, et al., Nat. Commun. 11 (2020) 3292.
doi: 10.1038/s41467-020-17063-1
X. Zhao, D. Madan, Y. Cheng, et al., Adv. Mater. 29 (2017) 1606928.
doi: 10.1002/adma.201606928
Y. Bao, Y. Sun, F. Jiao, W. Hu, Adv. Electron. Mater. 9 (2023) 2201310.
doi: 10.1002/aelm.202201310
L. Ren, P. Gao, J. Funct. Mater. 52 (2021) 2066–2077.
M.W. Li, Y.Q. Shi, ChemPlusChem 88 (2023) e202300215.
doi: 10.1002/cplu.202300215
D.F. Yuan, W.Y. Liu, X.Z. Zhu, Chem. Soc. Rev. 52 (2023) 3842–3872.
doi: 10.1039/D2CS01027E
J.H. Tang, Y.H. Pai, Z.Q. Liang, ACS Energy Lett. 7 (2022) 4299–4324.
doi: 10.1021/acsenergylett.2c02119
A.D. Scaccabarozzi, A. Basu, F. Anies, et al., Chem. Rev. 122 (2022) 4420–4492.
doi: 10.1021/acs.chemrev.1c00581
Y. Ma, C. Di, D. Zhu, Adv. Physics. Res. 2 (2023) 2300027.
doi: 10.1002/apxr.202300027
X. Bao, S. Hou, Z.X. Wu, et al., J. Mater. Sci. Technol. 148 (2023) 64–74.
doi: 10.1016/j.jmst.2022.10.081
Z. Zhang, N. Qi, Y.C. Wu, Z.Q. Chen, ACS Appl. Mater. Interfaces 13 (2021) 44409–44417.
doi: 10.1021/acsami.1c12832
G.H. Madsen, J. Carrete, M.J. Verstraete, Comput. Phys. Commun. 231 (2018) 140–145.
doi: 10.1016/j.cpc.2018.05.010
G.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175 (2016) 67–71.
J. Bardeen, W. Shockley, Phys. Rev. 80 (1950) 72–80.
doi: 10.1103/PhysRev.80.72
A. Suwardi, D. Bash, H.K. Ng, et al., J. Mater. Chem. A 7 (2019) 23762–23769.
doi: 10.1039/C9TA05967A
L. Deng, Y. Liu, Y. Zhang, S. Wang, P. Gao, Adv. Funct. Mater. 33 (2022) 2210770.
O. Badami, C. Medina-Bailon, S. Berrada, et al., Appl. Sci. 9 (2019) 1895.
doi: 10.3390/app9091895
R. Fang, X. Cui, C. Stampfl, S.P. Ringer, R. Zheng, Phys. Chem. Chem. Phys. 22 (2020) 2276–2282.
doi: 10.1039/C9CP05828A
W. Shi, J. Chen, J. Xi, D. Wang, Z. Shuai, Chem. Mater. 26 (2014) 2669–2677.
doi: 10.1021/cm500429w
W. Liang, A.I. Hochbaum, M. Fardy, et al., Nano Lett. 9 (2009) 1689–1693.
doi: 10.1021/nl900377e
A. Shafique, Y.H. Shin, Sci. Rep. 7 (2017) 506.
doi: 10.1038/s41598-017-00598-7
J.E. Northrup, Phys. Rev. B 76 (2007) 245202.
doi: 10.1103/PhysRevB.76.245202
M. Shahid, T. McCarthy-Ward, J. Labram, et al., Chem. Sci. 3 (2012) 181–185.
doi: 10.1039/C1SC00477H
J. Xi, M. Long, L. Tang, D. Wang, Z. Shuai, Nanoscale 4 (2012) 4348–4369.
doi: 10.1039/c2nr30585b
V. Coropceanu, J. Cornil, D.A. da Silva, et al., Chem. Rev. 107 (2007) 926–952.
doi: 10.1021/cr050140x
J.L. Brédas, D. Beljonne, V. Coropceanu, J. Cornil, Chem. Rev. 104 (2004) 4971–5003.
doi: 10.1021/cr040084k
Y.B. Song, C.A. Di, X.D. Yang, et al., J. Am. Chem. Soc. 128 (2006) 15940–15941.
doi: 10.1021/ja064726s
W.Q. Deng, W.A. Goddard, J. Phys. Chem. B 108 (2004) 8614–8621.
doi: 10.1021/jp0495848
G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127 (2005) 2339–2350.
doi: 10.1021/ja0461421
J.E. Norton, J.L. Brédas, J. Am. Chem. Soc. 130 (2008) 12377–12384.
doi: 10.1021/ja8017797
M. Moral, A. Garzón, J. Canales-Vázquez, J.C. Sancho-García, J. Phys. Chem. C 120 (2016) 24583–24596.
doi: 10.1021/acs.jpcc.6b07240
M. Moral, A. Garzón, G. García, J.M. Granadino-Roldán, M. Fernández-Gómez, J. Phys. Chem. C 119 (2015) 4588–4599.
doi: 10.1021/jp5120948
D.P. McMahon, A. Troisi, J. Phys. Chem. Lett. 1 (2010) 941–946.
doi: 10.1021/jz1001049
N. Lu, L. Li, M. Liu, Phys. Chem. Chem. Phys. 19 (2017) 16283.
doi: 10.1039/C7CP90124K
Z. Shuai, L. Wang, Q. Li, Adv. Mater. 23 (2011) 1145–1153.
doi: 10.1002/adma.201003503
L. Dong, C. Bao, S. Hu, et al., Nanomaterials 12 (2022) 1282.
doi: 10.3390/nano12081282
A. Casian, I. Sanduleac, J. Electron. Mater. 43 (2014) 3740–3745.
doi: 10.1007/s11664-014-3105-6
A. Casian, I. Sanduleac, Mater. Today: Proc. 2 (2015) 504–509.
doi: 10.1016/j.matpr.2015.05.069
Y. Wang, J. Zhou, R.G. Yang, J. Phys. Chem. C 115 (2011) 24418–24428.
doi: 10.1021/jp208490q
Y. Ma, A. Chinchore, A. Smith, M. Barral, V. Ferrari, Nano Lett. 18 (2018) 158.
doi: 10.1021/acs.nanolett.7b03721
Y. Ma, D. Hunt, K. Meng, et al., Phys. Rev. Mater. 4 (2020) 064006.
doi: 10.1103/PhysRevMaterials.4.064006
D. Di Nuzzo, C. Fontanesi, R. Jones, et al., Nat. Commun. 6 (2015) 6460.
doi: 10.1038/ncomms7460
C. Li, H. Ma, Z. Tian, Appl. Therm. Eng. 111 (2017) 1441–1447.
doi: 10.1016/j.applthermaleng.2016.08.154
J. Wu, Y. Sun, W. Xu, Q. Zhang, Synth. Met. 26 (2014) 6829–6851.
Y. Liu, W. Shi, T. Zhao, D. Wang, Z. Shuai, J. Phys. Chem. Lett. 10 (2019) 2493–2499.
doi: 10.1021/acs.jpclett.9b00716
X. Wang, T. Garcia, S. Monaco, B. Schatschneider, N. Marom, CrystEngComm 18 (2016) 7353–7362.
doi: 10.1039/C6CE00873A
S.J. Wang, M. Panhans, I. Lashkov, et al., Sci. Adv. 8 (2022) eabl9264.
doi: 10.1126/sciadv.abl9264
D.B. Zhu, P. Wang, M.X. Wan, et al., Proceedings of the Yamada Conference XV on Physics and Chemistry of Quasi One-Dimensional Conductors, 1986, pp. 281–284.
E. Dalas, S. Sakkopoulos, E. Vitoratos, J. Mater. Sci. 29 (1994) 4131–4133.
doi: 10.1007/BF00355982
S. Hwang, W.J. Potscavage, Y.S. Yang, et al., Phys. Chem. Chem. Phys. 18 (2016) 29199–29207.
doi: 10.1039/C6CP04572C
J. Wang, Y. Wang, Q. Li, et al., CCS Chem. 3 (2021) 2482–2493.
doi: 10.31635/ccschem.021.202101070
Y. Wang, W. Hao, W. Huang, et al., J. Phys. Chem. Lett. 11 (2020) 3928–3933.
doi: 10.1021/acs.jpclett.0c00678
R. Liu, Y. Ge, D. Wang, Z. Shuai, CCS Chem. 3 (2021) 1477–1483.
doi: 10.31635/ccschem.021.202100813
M. Bashi, H.A. Rahnamaye Aliabad, Opt. Quantum Electron. 53 (2021) 202.
doi: 10.1007/s11082-021-02853-8
Z. Shuai, D. Wang, Q. Peng, H. Geng, Acc. Chem. Res. 47 (2014) 3301–3309.
doi: 10.1021/ar400306k
M. Bürkle, T.J. Hellmuth, F. Pauly, Y. Asai, Phys. Rev. B 91 (2015) 165419.
doi: 10.1103/PhysRevB.91.165419
L. Li, O.Y. Kontsevoi, S.H. Rhim, A.J. Freeman, J. Chem. Phys. 138 (2013) 164503.
doi: 10.1063/1.4802033
Y. Ge, D. Wang, Z. Shuai, Liu, CCS Chem. 3 (2021) 1477–1483.
doi: 10.31635/ccschem.021.202100813
X. Yan, M. Xiong, X.Y. Deng, et al., Nat. Commun. 12 (2021) 5723.
doi: 10.1038/s41467-021-26043-y
M. Upadhyaya, C.J. Boyle, D. Venkataraman, Z. Aksamija, Sci. Rep. 9 (2019) 5820.
doi: 10.1038/s41598-019-42265-z
Y. Lu, Y. Zhang, C. Yang, et al., Nat. Commun. 13 (2022) 7240.
doi: 10.1038/s41467-022-34820-6
W. Shi, D. Wang, Z. Shuai, Adv. Electron. Mater. 5 (2019) 1800882.
doi: 10.1002/aelm.201800882
M. Alsufyani, M.A. Stoeckel, X.X. Chen, et al., Angew. Chem. Int. Ed. 61 (2022) e202113078.
doi: 10.1002/anie.202113078
H. Sadeghi, J. Phys. Chem. C Nanomater. Interfaces 123 (2019) 12556–12562.
doi: 10.1021/acs.jpcc.8b12538
H. Chen, C. Jia, X. Zhu, et al., Nat. Rev. Mater. 8 (2023) 165–185.
R. Almughathawi, S. Hou, Q. Wu, et al., ACS Sens. 6 (2021) 470–476.
doi: 10.1021/acssensors.0c02043
J.P. Bergfield, M.A. Solis, C.A. Stafford, ACS Nano 4 (2010) 5314–5320.
doi: 10.1021/nn100490g
P. Gehring, J.K. Sowa, C. Hsu, et al., Nat. Nanotechnol. 16 (2021) 426–430.
doi: 10.1038/s41565-021-00859-7
H. Arimatsu, Y. Osada, R. Takagi, T. Fujima, Polymers 13 (2021) 2–8.
Y. Chumakov, F. Aksakal, A. Dimoglo, A. Ata, S.A. Palomares-Sánchez, J. Electron. Mater. 45 (2016) 3445–3452.
doi: 10.1007/s11664-016-4540-3
E. Yildirim, G. Wu, X. Yong, et al., J. Mater. Chem. C 6 (2018) 5122–5131.
doi: 10.1039/C8TC00917A
J. Wang, L. Liu, F. Wu, et al., ChemSusChem 15 (2022) e202102420.
doi: 10.1002/cssc.202102420
M. Xiong, X. Yan, J.T. Li, et al., Angew. Chem. Int. Ed. 60 (2021) 8189–8197.
doi: 10.1002/anie.202015216
E. Cho, C. Risko, D. Kim, et al., J. Am. Chem. Soc. 134 (2012) 6177–6190.
doi: 10.1021/ja210272z
G.Y. Ge, J.T. Li, J.R. Wang, et al., Adv. Funct. Mater. 32 (2021) 2108289.
C. Di, W. Xu, D.B. Zhu, Natl. Sci. Rev. 3 (2016) 269–271.
doi: 10.1093/nsr/nww040
W. Jiang, Z.L. Yang, D. Weng, et al., Chin. Chem. Lett. 25 (2014) 849–853.
doi: 10.1016/j.cclet.2014.03.031
S. Luo, Z. Xu, F. Zhong, H. Li, L. Chen, Chin. Chem. Lett. 35 (2024) 109014.
doi: 10.1016/j.cclet.2023.109014
J. Meng, N. Luo, G. Zhang, et al., Chin. Chem. Lett. 34 (2023) 107687.
doi: 10.1016/j.cclet.2022.07.030
N. Sun, Q. Zou, W. Chen, et al., Chin. Chem. Lett. 34 (2023) 108078.
doi: 10.1016/j.cclet.2022.108078
S.H. Talib, Z. Lu, B. Bashir, et al., Chin. Chem. Lett. 34 (2023) 107412.
doi: 10.1016/j.cclet.2022.04.010
Y. Wei, W. Hou, P. Zhang, R.A. Soomro, B. Xu, Chin. Chem. Lett. 33 (2022) 3212–3216.
doi: 10.1016/j.cclet.2021.10.035
D. Yao, Y. Liu, J. Li, H. Zhang, Chin. Chem. Lett. 30 (2019) 277–284.
doi: 10.1016/j.cclet.2018.07.012
G.S. Na, H. Chang, NPJ Comput. 8 (2022) 214.
doi: 10.1038/s41524-022-00897-2
R. Seshadri, T.D. Sparks, APL Mater. 4 (2016) 053206.
doi: 10.1063/1.4944682
L. Lin, Mater. Perform. Charact. 4 (2015) MPC20150014.
J. Carrete, W. Li, N. Mingo, et al., Phys. Rev. X 4 (2014) 011019.
G. Hautier, Comput. Mater. Sci. 163 (2019) 108–116.
doi: 10.1016/j.commatsci.2019.02.040
X. Rodríguez-Martínez, E. Pascual-San-José, M. Campoy-Quiles, Energy Environ. Sci. 14 (2021) 3301–3322.
doi: 10.1039/D1EE00559F
X. Jia, H. Yao, Z. Yang, et al., Appl. Phys. Lett. 123 (2023) 203902.
doi: 10.1063/5.0175233
M.Z. Akgul, G. Konstantatos, A.C.S. Appl, Nano Mater. 4 (2021) 2887.
Y. Xu, L. Jiang, X. Qi, Comput. Mater. Sci. 197 (2021) 110625.
doi: 10.1016/j.commatsci.2021.110625
E. Yildirim, Ö. C. Yelgel, Using Machine Learning Techniques to Discover Novel Thermoelectric Materials, New Materials and Devices for Thermoelectric Power Generation, IntechOpen, 2023, doi:
G. Han, Y. Sun, Y. Feng, et al., Adv. Electron. Mater. 9 (2023) 2300042.
doi: 10.1002/aelm.202300042
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Longlong Geng , Huiling Liu , Wenfeng Zhou , Yong-Zheng Zhang , Hongliang Huang , Da-Shuai Zhang , Hui Hu , Chao Lv , Xiuling Zhang , Suijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Kun Tang , Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Ruowen Liang , Chao Zhang , Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Zeyu Jiang , Yadi Wang , Changwei Chen , Chi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400
Yanrui Liu , Paramaguru Ganesan , Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369
Jieqiong Xu , Wenbin Chen , Shengkai Li , Qian Chen , Tao Wang , Yadong Shi , Shengyong Deng , Mingde Li , Peifa Wei , Zhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808
Jing Wang , Zhongliao Wang , Jinfeng Zhang , Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202
Yikun Wang , Qiaomei Chen , Shijie Liang , Dongdong Xia , Chaowei Zhao , Christopher R. McNeill , Weiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164
Xiangan Song , Shaogang Shen , Mengyao Lu , Ying Wang , Yong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118
Chaozheng He , Pei Shi , Donglin Pang , Zhanying Zhang , Long Lin , Yingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116
Zhongjie Li , Xiangyue Kong , Yuhao Liu , Huayu Qiu , Lingling Zhan , Shouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378
Jiakun Bai , Junhui Jia , Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323
Zhao-Xia Lian , Xue-Zhi Wang , Chuang-Wei Zhou , Jiayu Li , Ming-De Li , Xiao-Ping Zhou , Dan Li . Producing circularly polarized luminescence by radiative energy transfer from achiral metal-organic cage to chiral organic molecules. Chinese Chemical Letters, 2024, 35(8): 109063-. doi: 10.1016/j.cclet.2023.109063
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Liangji Chen , Zhen Yuan , Fudong Feng , Xin Zhou , Zhile Xiong , Wuji Wei , Hao Zhang , Banglin Chen , Shengchang Xiang , Zhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344
Xinyi Cao , Yucheng Jin , Hailong Wang , Xu Ding , Xiaolin Liu , Baoqiu Yu , Xiaoning Zhan , Jianzhuang Jiang . A tetraaldehyde-derived porous organic cage and covalent organic frameworks: Syntheses, structures, and iodine vapor capture. Chinese Chemical Letters, 2024, 35(9): 109201-. doi: 10.1016/j.cclet.2023.109201